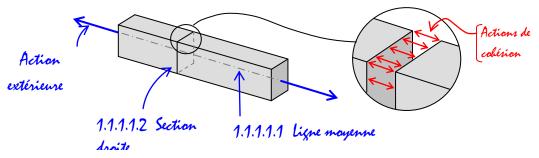
Résistance des matériaux

HYPOTHESES NECESSAIRES A LA THEORIE DES POUTRES:

<u>Matériau</u>: Il est continu (à une échelle macroscopique tout le volume considéré est rempli de façon continue), **isotrope** (les caractéristiques du matériau sont identiques dans toutes les directions) et **homogène** (le matériau composant le solide est identique en chaque point).

Modèle poutre : Un solide est considéré comme une poutre si :

- Sa ligne moyenne est droite ou à grand rayon de courbure.
- Il n'y a pas de variation brusque de section.


Ces deux cas engendreraient des concentrations de contrainte.

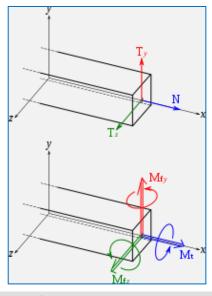
Déformations :

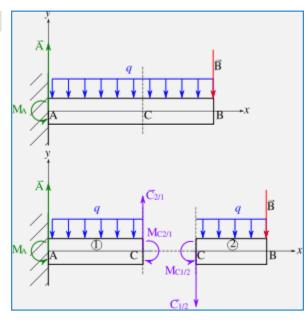
- Elles doivent être de faible envergure (infinitésimales pour supposer que les points d'application des actions mécaniques ne bougent pas).
- Chaque section reste perpendiculaire à la ligne moyenne.

Une poutre est composée d'un assemblage structuré d'atomes maintenus par les forces de cohésion interatomes.

La méthode des poutres s'intéresse aux actions de cohésion dans une <u>section droite</u> (section droite : section perpendiculaire à la ligne moyenne).

SOLLICITATIONS				
Traction ou compression	Torsion	Flexion		
Traction Compression	Attention: l'étude spécifique de la torsion ne peut se faire que sur des poutres de révolution (section circulaire).			
DEFORMATIONS				
Traction: allongement axial et rétrécissement latéral Compression: rétrécissement axial et épaississement latéral	Attention: dessin avec poutre à section rectangulaire seulement pour pouvoir visualiser la déformation de torsion	Fibres Fibres tendues		


Torseur de cohésion


Considérons une poutre sollicitée par des actions mécaniques extérieures.

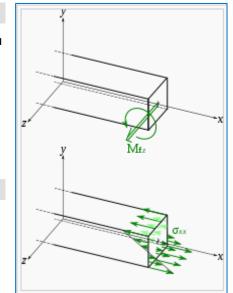
Une coupe virtuelle de cette poutre et une étude statique de ce tronçon nous fait apparaître des efforts de cohésion dans la section coupée.

Ces efforts peuvent être définis par un torseur réduit dans la section et positionné sur la fibre neutre de la poutre (fibre non modifiée en longueur).

Ce torseur est nommé "Torseur de Cohésion".

$$\{\mathcal{T}_{\mathrm{coh}}\} = \left\{egin{matrix} \mathrm{N} & \mathrm{M_t} \\ \mathrm{T}_y & \mathrm{M_{f}}_y \\ \mathrm{T}_z & \mathrm{M_{fz}} \end{matrix}
ight\}_{\mathrm{G}xyz}$$

Composantes du torseur :

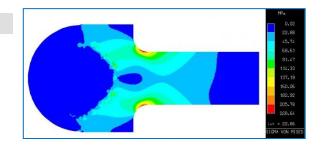

N: Effort Normal Mt: Moment de Torsion

T : Effort Tranchant Mf : Moment fléchissant

Notion de contraintes

La contrainte est une composante élémentaire des efforts de cohésion, ou un effort élémentaire appliqué à une surface élémentaire. Une contrainte est donc une force divisée par une surface.

Elle est homogène à une pression et, en mécanique, est exprimée en N/mm² (ou Mpa)

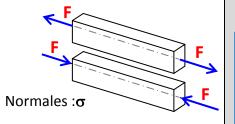

Répartition de contraintes :

Les contraintes ne sont pas forcement réparties uniformément dans la section.

Ci-contre, la répartition de contraintes dans une section soumise à de la flexion pure, donc à un torseur de cohésion ne faisant apparaître qu'un moment fléchissant (ici suivant z)

Concentration de contraintes

La concentration de contrainte est un phénomène survenant lorsque la section d'une pièce varie de manière brutale : trou (perçage), rainure, épaulement, gorge, fond de fissure, ...


CALCUL DE RESISTANCE

Calculer une résistance de pièce revient à comparer la contrainte à l'intérieur de celle-ci à la contrainte maximale que supporte le matériau la composant.

La déformation est directement proportionnelle à la contrainte.

EXEMPLE

Traction -compression

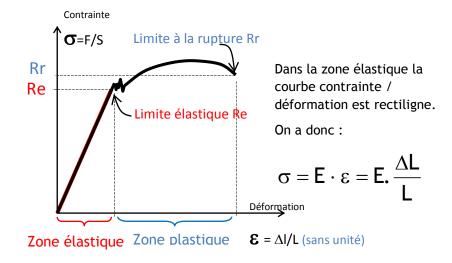
Type de contraintes :

 $\sigma > 0 \rightarrow \text{traction}$

 σ <0 \rightarrow compression

Limite à ne pas dépasser :

« Condition de résistance »


Avec

Re = limite élastique,

Rpe = résistance pratique à l'extension

s = coefficient de sécurité.

Relation contrainte - déformation :

$$\sigma = \frac{F^{\text{(N)}}}{S_{\text{(mm²)}}}$$

$$\sigma_{\max} \leq R_{pe}$$

$$R_{pe} = \frac{R_e}{s}$$

LOI DE HOOKE

$$\frac{F}{S} = E.\frac{\Delta L}{L}$$

avec **E** = module d'élasticité longitudinal ou **module de YOUG**

(Acier E \cong 210 000 MPa)

Contrainte équivalente :

Lors de chargements de pièces quelconques, la contrainte ne peut souvent plus être définie Normale (σ) ou Tangentielle (τ). Une contrainte équivalente à une contrainte normale est alors utile pour réaliser une étude de résistance.

Ces contraintes équivalentes sont le plus souvent définies suivant les critères de *Tresca* ou de *Von Mises*.

Résistance élastique de matériaux usuels			
Matière	Nuance	R _e (MPa)	
Bois lamellé-collé	GL24 à GL32	24 à 32	
Alliage d'aluminium	AU 4G	450	
Acier de construction usuel non allié	S235 à S355	235 à 355	
Acier au carbone trempé	XC 30 (C30)	350 à 400	
Acier faiblement allié trempé	30 Cr Ni Mo 16 (30 CND 8)	700 à 1 450	
Alliage de Titane	TA 6V	1 200	
Verre		2 500 à 3200	
Composites Fibre/matrice	Verre ou Carbone	1 000 à 1 80	

Module d'Young		
Matériaux	Module (GPa)	
Acier de construction	210	
Acier à ressorts	220	
Acier inoxydable 18-10	203	
Bronze (cuivre + 9 à 12 % d'étain)	124	
Cuivre laminé U4 (Recuit)	90	
Duralumin AU4G	75	
Fontes	83 à 170	
Béton	20 à 50	
Bois (sens de fibre)	10 à 20	
Caoutchouc	0,001 à 0,1	
Fibre de carbone haut module	640	
Fibre de carbone haute résistance	240	
Kevlar	34,5	
Nylon	2 à 5	
Plexiglas	2,38	
Polycarbonate	2,3	
Polyéthylène	0,2 à 0,7	
Polystyrène	3 à 3,4	