Modélisation des systèmes mécaniques

LES ACTIONS MECANIQUES

DATE:

Introduction: La statique, à quoi ça sert?

La statique à pour objectif l'étude de l'équilibre des corps. Le but final est de déterminer les efforts agissant sur un système et de définir les efforts pouvant être transmis par les liaisons du système.

1/ Qu'est ce qu'u	ne action mécanique ?
1. Définition : Une	action mécanique est définie par toute cause susceptible de :
→ .	
> .	
Exemple: un footballeur fra	appant un ballon \Rightarrow
2. <u>Différents types</u>	d'action mécanique :
Actions mécaniques de con	ntact :
Type de contact :	
✓ solide / liquide :	
Actions mécaniques à dist	
✓ champ magnétique	ie ************************************
2/ Denrésentation	on d'une action mécanique :
L/ Representant	m d une de non mecanique.
_	ntre une charge de masse M est
suspendue au bout du cât	les actions mécaniques agissant sur la
	ie le câble est en position verticale.
Remarque importante:	\Masse M
C'est a dire que l'on cree u	ne frontière autour du système concerné.
Actions mécaniques agiss	ant sur la masse : On isole la masse M
	Combien d'actions mécaniques agissent sur la masse M ?
	En quels points se situent les actions mécaniques ?
$M \sim$	Suivant quelle direction agissent-elles?
 	
	Suivant quels sens ?
	Quelle est l' intensité de l'action mécanique de contact ?

Modélisation des
systèmes mécaniques

LES ACTIONS MECANIQUES

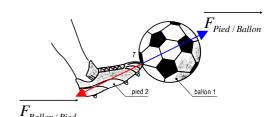
DA	TF	
DΛ	1 L	

Notion de vecteur force :

On appelle force, l'action mécanique élémentaire qui s'exerce mutuellement entre deux particules, pas forcément en contact. Ce sont toutes les causes susceptibles de déformer un corps ou d'avoir un effet sur les caractéristiques du mouvement de ce corps.				
<u>Remarque importante :</u> En l'absence	de frotte	ments, une force est		
On caractérise une force par : Tracer ci-dessous un vecteur force	•	Son point d'application		

de norme 300 N (1cm => 10daN)

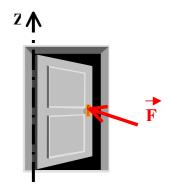
•	Son point d'application	
	Sa direction ou ligne d'action	
~	Son sens	
$\left\ \overrightarrow{F_{1/2}} ight\ $	Son intensité ou norme ou module	


	Notation :	<u>Unité</u> :
--	------------	----------------

Principe des actions mutuelles :

Toute force implique l'existence d'une autre force qui lui est

Exemple: un footballeur frappant un ballon

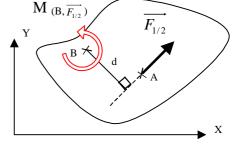


5/ Moment d'une force :

Un moment est une action mécanique (force) qui

Exemple: une porte

L'action \overrightarrow{F} exercée sur la poignée de la porte crée un mouvement de rotation autour de l'axe Z. On dit que la force \vec{F} crée un **moment** autour de l'axe Z.



1. <u>Définition géométrique</u>:

On appelle moment, par rapport au point B, de la force $\overrightarrow{F_{1/2}}$, appliquée au point A, le vecteur lié d'origine B défini par la relation :

Le segment d représente la distance entre le point B et la droite support de la force $\overrightarrow{F_{1/2}}$

Modéli	sation	des
systèmes	mécan	iques

LES ACTIONS MECANIQUES

DATE:

2. Propriétés du vecteur moment :

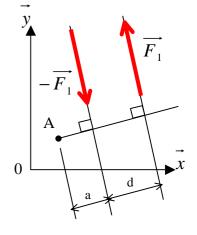
Le vecteur M $(B, \overrightarrow{F_{1/2}})$ est tel que :

\triangleright	

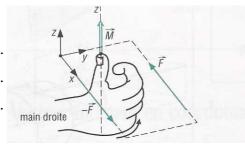
Notation:

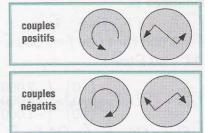
<u> U**nité**</u> :

3. Cas de nullité du vecteur moment :


Le vecteur moment M $(B, \overline{F_{1/2}})$ est nul si le point B se situe sur le support de la force $\overrightarrow{F_{1/2}}$.

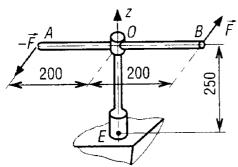
6/ Notion de couple :

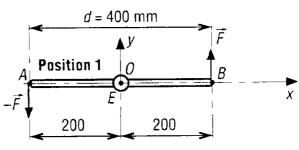

1. Définition:


Le moment engendré par deux forces égales et opposées, de sens contraire et de support parallèle constitue un couple noté C.

Le moment d'un couple est constant en tout point du plan.

2. Signe du couple :




3. Exemple : Clé à bougie

Une clé à bougie se compose d'un corps et d'une tige de manœuvre coulissante et réglable.

Les forces \vec{F} et $-\vec{F}$ schématisent les actions mécaniques exercées par la main de l'opérateur.

Si ||F|| =100N, déterminons sous forme algébrique, le couple de desserrage C exercé par la clef sur l'écrou en E pour les 3 positions indiquées dans le tableau suivant :

Modélisation des systèmes mécaniques

LES ACTIONS MECANIQUES

DATE:

Position de la tige de manoeuvre	Couple sur l'écrou
A $O \mid E$ Position 2 $\overrightarrow{F} \mid B$	
-F 100 300	
Position 3 OF E	
-F → B	
A Position 4	
_F L	
250 150	

Conclusion: .

7/ Moment résultant de plusieurs forces :

Le moment résultant $\overrightarrow{M_A}$ en un point A de n forces $\overrightarrow{F_1}, \overrightarrow{F_2}, ..., \overrightarrow{F_n}$ est égal à la somme des moments en A de chacune des forces.

100

Exemple:

La balance à contre poids ci-contre est composée d'un contre poids de masse m = 5kg coulissant sur un support articulé en O avec le bâti fixe. La masse à mesurer se fixe au point P du support.

Question 1:

Lors de la mesure, à quel instant la valeur du poids lue sur la règle graduée est-elle juste?

Question 2:

Quelle est la relation qui traduit cette condition?

......

Ouestion 3 :

Déterminer alors la valeur de la masse mesurée ?

Nota: la force de pesanteur (poids) associée à la masse en P est:

avec **P**: poids en N (newton)

m: masse en kg

g: accélération terrestre = $9.81 \text{ m/s}^2 \approx 10 \text{ m/s}^2$

.....

COURS: Les actions mécaniques www.gecif.net contrepoids

Modéli	sation des	š
systèmes	mécaniqu	ıes

LES ACTIONS MECANIQUES

DA	TE
ν_{I}	

8/ Rappel des différentes actions mécaniques rencontrées :

Actions	mécaniq	jues de	contact	solide /	solide	<u>:</u>

	 • • • •
>	 • • • •

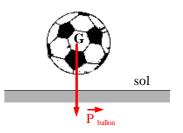
Exemple: Actions mécaniques dans les liaisons parfaites

Nota: Les liaisons parfaites sont des liaisons qu'on suppose sans frottement

Appui plan		Articulati	on	Contact ponctuel	
2 A 1/2			A _{1/2} α 2	A _{1/2}) - \\
Point d'application	••••	Point d'application	••••	Point d'application	••••
Direction		Direction	••••	Direction	
Sens		Sens		Sens	••••
Norme	••••	Norme	••••	Norme	••••

Actions mécaniques de contact liquide / solide :

Lorsque l'effort est réparti sur une surface **S**, l'action exercée sur celle-ci est représentée par une pression de contact ou pression notée **p**.


Exemple : Action de l'huile so	us pression sur le piston d'un vérin.		\downarrow^{D}	
				F
avec	F : force en N (newton) p : pression en Pa (Pascal) S : surface en m ² et S = $(\pi .d^2)/4$	L ₁	S	p
Actions mécaniques à distanc	<u>ce :</u>			

	 •	

>

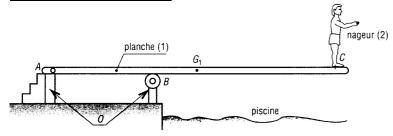
$\underline{\textit{Exemple}}$: ballon de football

Point	d'application	
]	Direction	••••
	Sens	••••
	Norme	••••

Modélisation des systèmes mécaniques

LES ACTIONS MECANIQUES

DATE:


9/ Isolement d'un solide :

L'isolement d'un solide est la première étape dans la résolution d'un problème en statique. Le solide isolé peut être un croquis à main levée, un dessin simplifié ou un dessin précis à l'échelle du solide étudié, destiné à décrire et à définir toutes les actions mécaniques et les efforts qui s'y exercent.

Tous les éléments connus concernant les actions extérieures agissant sur le solide isolé doivent être clairement indiqués :

- ➤ Point d'application
- Direction
- > Sens
- Intensité

Exemple: plongeoir

Le plongeoir ci-contre est constitué avec un appui en B et une articulation au point A. Le nageur se situe au point C.

a. On isole la planche:

Etape 1 : on dessine la planche

Etape 2: on dresse le bilan des actions mécaniques agissant sur la planche.

.....

b. On isole le nageur :

Etape 1 : on dessine le nageur

Etape 2 : on dresse le bilan des actions mécaniques agissant sur le nageur.

.....

c. On isole la planche et le nageur :

Etape 1: on dessine l'ensemble $E = \{planche + nageur\}$

Etape 2 : on dresse le bilan des actions mécaniques agissant sur l'ensemble E

.....