
Exo7

Calculs d’intégrales

Fiche d’Arnaud Bodin, soigneusement relue par Chafiq Benhida

1 Utilisation de la définition

Exercice 1
Soit f la fonction définie sur [0,4] par

f (x) =



−1 si x = 0
1 si 0 < x < 1
3 si x = 1
−2 si 1 < x≤ 2
4 si 2 < x≤ 4.

1. Calculer
∫ 4

0 f (t)dt.

2. Soit x ∈ [0,4], calculer F(x) =
∫ x

0 f (t)dt.

3. Montrer que F est une fonction continue sur [0,4]. La fonction F est-elle dérivable sur [0,4] ?

Correction H Vidéo � [002081]

Exercice 2
Soient les fonctions définies sur R,

f (x) = x , g(x) = x2 et h(x) = ex,

Justifier qu’elles sont intégrables sur tout intervalle fermé borné de R. En utilisant les sommes de Riemann,
calculer les intégrales

∫ 1
0 f (x)dx,

∫ 2
1 g(x)dx et

∫ x
0 h(t)dt.

Indication H Correction H Vidéo � [002082]

Exercice 3
Soit f : [a,b]→ R une fonction continue sur [a,b] (a < b).

1. On suppose que f (x) ≥ 0 pour tout x ∈ [a,b], et que f (x0) > 0 en un point x0 ∈ [a,b]. Montrer que∫ b
a f (x)dx > 0. En déduire que : «si f est une fonction continue positive sur [a,b] telle que

∫ b
a f (x)dx = 0

alors f est identiquement nulle».

2. On suppose que
∫ b

a f (x)dx = 0. Montrer qu’il existe c ∈ [a,b] tel que f (c) = 0.

3. Application : on suppose que f est une fonction continue sur [0,1] telle que
∫ 1

0 f (x)dx = 1
2 . Montrer qu’il

existe d ∈ [0,1] tel que f (d) = d.

Indication H Correction H Vidéo � [002085]

Exercice 4
Soit f : R→ R une fonction continue sur R et F(x) =

∫ x
0 f (t)dt. Répondre par vrai ou faux aux affirmations

suivantes :
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1. F est continue sur R.

2. F est dérivable sur R de dérivée f .

3. Si f est croissante sur R alors F est croissante sur R.

4. Si f est positive sur R alors F est positive sur R.

5. Si f est positive sur R alors F est croissante sur R.

6. Si f est T -périodique sur R alors F est T -périodique sur R.

7. Si f est paire alors F est impaire.

Correction H Vidéo � [002091]

2 Calculs de primitives

Exercice 5
Calculer les primitives suivantes par intégration par parties.

1.
∫

x2 lnxdx

2.
∫

xarctanxdx

3.
∫

lnxdx puis
∫
(lnx)2 dx

4.
∫

cosxexpxdx

Indication H Correction H Vidéo � [006864]

Exercice 6
Calculer les primitives suivantes par changement de variable.

1.
∫
(cosx)1234 sinxdx

2.
∫ 1

x lnx dx

3.
∫ 1

3+exp(−x)dx

4.
∫ 1√

4x−x2 dx

Indication H Correction H Vidéo � [006865]

Exercice 7
Calculer les primitives suivantes, en précisant si nécessaire les intervalles de validité des calculs :

1.
∫ x+2

x2−3x−4 dx

2.
∫ x−1

x2+x+1 dx

3.
∫

sin8 xcos3 xdx

4.
∫ 1

sinx dx

5.
∫ 3−sinx

2cosx+3tanx dx

Indication H Correction H Vidéo � [006866]

3 Calculs d’intégrales

Exercice 8
Calculer les intégrales suivantes :

1.
∫ π

2
0 xsinxdx (intégration par parties)

2.
∫ 1

0
ex

√
ex+1

dx (à l’aide d’un changement de variable simple)
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3.
∫ 1

0
1

(1+x2)
2 dx (changement de variable x = tan t)

4.
∫ 1

0
3x+1
(x+1)2 dx (décomposition en éléments simples)

5.
∫ 2

1
2

(
1+ 1

x2

)
arctanxdx (changement de variable u = 1

x )
Indication H Correction H Vidéo � [006867]

Exercice 9
Calculer les intégrales suivantes : ∫ π

2

0

1
1+ sinx

dx et
∫ π

2

0

sinx
1+ sinx

dx.

Indication H Correction H Vidéo � [002095]

Exercice 10 Intégrales de Wallis

Soit In =
∫ π

2

0
(sinx)n dx pour n ∈ N.

1. Montrer que In+2 =
n+1
n+2 In. Expliciter In. En déduire

∫ 1
−1
(
1− x2

)n dx.
2. Montrer que (In)n est positive décroissante. Montrer que In ∼ In+1

3. Simplifier In · In+1. Montrer que In ∼
√

π

2n . En déduire 1·3···(2n+1)
2·4···(2n) ∼ 2

√ n
π

.
Indication H Correction H Vidéo � [002096]

Exercice 11

Soit In =
∫ 1

0

xn

1+ x
dx.

1. En majorant la fonction intégrée, montrer que limn→+∞ In = 0.
2. Calculer In + In+1.

3. Déterminer lim
n→+∞

(
n

∑
k=1

(−1)k+1

k

)
.

Indication H Correction H Vidéo � [002097]

4 Applications : calculs d’aires, calculs de limites

Exercice 12

Calculer l’aire de la région délimitée par les courbes d’équation y =
x2

2
et y =

1
1+ x2 .

Indication H Correction H Vidéo � [002099]

Exercice 13
Calculer l’aire intérieure d’une ellipse d’équation :

x2

a2 +
y2

b2 = 1.

Indications. On pourra calculer seulement la partie de l’ellipse correspondant à x ≥ 0, y ≥ 0. Puis exprimer y
en fonction de x. Enfin calculer une intégrale.
Indication H Correction H Vidéo � [006863]

Exercice 14
Calculer la limite des suites suivantes :
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1. un = n
n−1

∑
k=0

1
k2 +n2

2. vn =
n

∏
k=1

(
1+

k2

n2

) 1
n

Indication H Correction H Vidéo � [002100]

Retrouver cette fiche et d’autres
exercices de maths sur

exo7.emath.fr
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Indication pour l’exercice 2 N
Les fonctions continues ne seraient-elles pas intégrables ?

Il faut se souvenir de ce que vaut la somme des n premiers entiers, la somme des carrés des n premiers entiers
et la somme d’une suite géométrique. La formule générale pour les sommes de Riemann est que

∫ b
a f (x)dx est

la limite (quand n→+∞) de

Sn =
b−a

n

n−1

∑
k=0

f
(

a+ k
b−a

n

)
.

Indication pour l’exercice 3 N

1. Revenir à la définition de la continuité en x0 en prenant ε = f (x0)
2 par exemple.

2. Soit f est tout le temps de même signe (et alors utiliser la première question), soit ce n’est pas le cas (et
alors utiliser un théorème classique...).

3. On remarquera que
∫ 1

0 f (x)dx− 1
2 =

∫ 1
0 ( f (x)− x)dx.

Indication pour l’exercice 5 N

1. Pour
∫

x2 lnxdx poser v′ = x2, u = lnx.

2. Pour
∫

xarctanxdx poser v′ = x et u = arctanx.

3. Pour les deux il faut faire une intégration par parties avec v′ = 1.

4. Pour
∫

cosxexpxdx il faut faire deux intégrations par parties.

Indication pour l’exercice 6 N

1.
∫

cos1234 xsinxdx =− 1
1235 cos1235 x+ c (changement de variable u = cosx)

2.
∫ 1

x lnx dx = ln |lnx|+ c (changement de variable u = lnx)

3.
∫ 1

3+exp(−x)dx = 1
3 ln(3expx+1)+ c (changement de variable u = expx)

4.
∫ 1√

4x−x2 dx = arcsin
(1

2 x−1
)
+ c (changement de variable u = 1

2 x−1)

Indication pour l’exercice 7 N

1.
∫ x+2

x2−3x−4 dx =−1
5 ln |x+1|+ 6

5 ln |x−4|+ c (décomposition en éléments simples)

2.
∫ x−1

x2+x+1 dx = 1
2 ln |x2 + x+1|−

√
3arctan

(
2√
3

(
x+ 1

2

))
+ c

3.
∫

sin8 xcos3 xdx = 1
9 sin9 x− 1

11 sin11 x+ c

4.
∫ 1

sinx dx = 1
2 ln
∣∣1−cosx

1+cosx

∣∣+ c = ln
∣∣tan x

2

∣∣+ c (changement de variable u = cosx ou u = tan x
2 )

5.
∫ 3−sinx

2cosx+3tanx dx =−1
5 ln |2− sinx|+ 7

5 ln |1+2sinx|+ c (changement de variable u = sinx)

Indication pour l’exercice 8 N

1.
∫ π

2
0 xsinxdx = 1 (intégration par parties v′ = sinx, u = x)

2.
∫ 1

0
ex

√
ex+1

dx = 2
√

e+1−2
√

2 (à l’aide du changement de variable u = ex)

3.
∫ 1

0
1

(1+x2)
2 dx = π

8 +
1
4 (changement de variable x = tan t, dx = (1+ tan2 t)dt et 1+ tan2 t = 1

cos2 t )

4.
∫ 1

0
3x+1
(x+1)2 dx = 3ln2−1 (décomposition en éléments simples de la forme 3x+1

(x+1)2 =
α

x+1 +
β

(x+1)2 )
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5.
∫ 2

1
2

(
1+ 1

x2

)
arctanxdx = 3π

4 (changement de variables u = 1
x et arctanx+ arctan 1

x =±π

2 )

Indication pour l’exercice 9 N∫ π

2
0

1
1+sinx dx = 1 (changement de variables t = tan x

2 ).∫ π

2
0

sinx
1+sinx dx = π

2 −1 (utiliser la précédente).

Indication pour l’exercice 10 N

1. Faire une intégration par parties afin d’exprimer In+2 en fonction de In. Pour le calcul explicite on distin-
guera le cas des n pairs et impairs.

2. Rappel : un ∼ vn est équivalent à un
vn
→ 1. Utiliser la décroissance de In pour encadrer In+1

In
.

Indication pour l’exercice 11 N

1. Majorer par xn.

2.

3. On pourra calculer (I0 + I1)− (I1 + I2)+(I2 + I3)−·· ·

Indication pour l’exercice 12 N

Un dessin ne fait pas de mal ! Il faut ensuite résoudre l’équation x2

2 = 1
x2+1 puis calculer deux intégrales.

Indication pour l’exercice 13 N

Il faut se ramener au calcul de
∫ a

0
b

√
1− x2

a2 dx.

Indication pour l’exercice 14 N
On pourra essayer de reconnaître des sommes de Riemann, puis calculer des intégrales. Pour le produit com-
poser par la fonction ln, afin de transformer le produit en une somme.
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Correction de l’exercice 1 N

1. On trouve
∫ 4

0 f (t)dt =+7. Il faut tout d’abord tracer le graphe de cette fonction. Ensuite la valeur d’une
intégrale ne dépend pas de la valeur de la fonction en un point, c’est-à-dire ici les valeurs en x = 0, x = 1,
x = 2 n’ont aucune influence sur l’intégrale. Ensuite on revient à la définition de

∫ 4
0 f (t)dt : pour la

subdivision de [0,4] définie par {x0 = 0,x1 = 1,x2 = 2,x3 = 3,x4 = 4}, on trouve la valeur de l’intégrale
(ici le sup et l’inf sont atteints et égaux pour cette subdivision et toute subdivision plus fine). Une autre
façon de faire est considérer que f est une fonction en escalier (en «oubliant» les accidents en x = 0,
x = 1, x = 2) dont on sait calculer l’intégrale.

2. C’est la même chose pour
∫ x

0 f (t)dt, mais au lieu d’aller jusqu’à 4 on s’arrête à x, on trouve

F(x) =


x si 06 x6 1
3−2x si 1 < x6 2
4x−9 si 2 < x6 4.

3. Les seuls points à discuter pour la continuité sont les points x = 1 et x = 2, mais les limites à droite et à
gauche de F sont égales en ces points donc F est continue. Par contre F n’est pas dérivable en x = 1 (les
dérivées à droite et à gauche sont distinctes), F n’est pas non plus dérivable en x = 2.

Correction de l’exercice 2 N
Les fonctions sont continues donc intégrables !

1. En utilisant les sommes de Riemann, on sait que
∫ 1

0 f (x)dx est la limite (quand n→+∞) de 1
n ∑

n−1
k=0 f ( k

n).
Notons Sn = 1

n ∑
n−1
k=0 f ( k

n). Alors Sn = 1
n ∑

n−1
k=0

k
n = 1

n2 ∑
n−1
k=0 k = 1

n2
n(n−1)

2 . On a utilisé que la somme des

entiers de 0 à n−1 vaut n(n−1)
2 . Donc Sn tend vers 1

2 . Donc
∫ 1

0 f (x)dx = 1
2 .

2. Même travail :
∫ 2

1 g(x)dx est la limite de S′n =
2−1

n ∑
n−1
k=0 g(1+k 2−1

n ) = 1
n ∑

n−1
k=0(1+

k
n)

2 = 1
n ∑

n−1
k=0(1+2 k

n +
k2

n2 ). En séparant la somme en trois nous obtenons : S′n =
1
n(n+

2
n ∑

n−1
k=0 k+ 1

n2 ∑
n−1
k=0 k2) = 1+ 2

n2
n(n−1)

2 +
1
n3

(n−1)n(2n−1)
6 . Donc à la limite on trouve S′n→ 1+1+ 1

3 = 7
3 . Donc

∫ 2
1 g(x)dx = 7/3. Remarque : on a

utilisé que la somme des carrés des entiers de 0 à n−1 est (n−1)n(2n−1)
6 .

3. Même chose pour
∫ x

0 h(t)dt qui est la limite de S′′n = x
n ∑

n−1
k=0 g( kx

n ) =
x
n ∑

n−1
k=0 e

kx
n = x

n ∑
n−1
k=0(e

x
n )k. Cette

dernière somme est la somme d’une suite géométrique (si x 6= 0), donc S′′n = x
n

1−(e x
n )n

1−e
x
n

= x
n

1−ex

1−e
x
n
= (1−

ex)
x
n

1−e
x
n

qui tend vers ex− 1. Pour obtenir cette dernière limite on remarque qu’en posant u = x
n on a

x
n

1−e
x
n
=−1/ eu−1

u qui tend vers −1 lorsque u→ 0 (ce qui est équivalent à n→+∞).

Correction de l’exercice 3 N

1. Écrivons la continuité de f en x0 avec ε = f (x0)
2 > 0 : il existe δ > 0 tel que pour tout x ∈ [x0−δ ,x0 +δ ]

on ait | f (x)− f (x0)| 6 ε . Avec notre choix de ε cela donne pour x ∈ [x0− δ ,x0 + δ ] que f (x) > f (x0)
2 .

Pour évaluer
∫ b

a f (x)dx nous la coupons en trois morceaux par linéarité de l’intégrale :∫ b

a
f (x)dx =

∫ x0−δ

a
f (x)dx+

∫ x0+δ

x0−δ

f (x)dx+
∫ b

x0+δ

f (x)dx.

Comme f est positive alors par positivité de l’intégrale
∫ x0−δ

a f (x)dx > 0 et
∫ b

x0+δ
f (x)dx > 0. Pour le

terme du milieu on a f (x) > f (x0)
2 donc

∫ x0+δ

x0−δ
f (x)dx >

∫ x0+δ

x0−δ

f (x0)
2 dx = 2δ

f (x0)
2 (pour la dernière équa-

tion on calcule juste l’intégrale d’une fonction constante !). Le bilan de tout cela est que
∫ b

a f (x)dx >
2δ

f (x0)
2 > 0.

Donc pour une fonction continue et positive f , si elle est strictement positive en un point alors
∫ b

a f (x)dx>
0. Par contraposition pour une fonction continue et positive si

∫ b
a f (x)dx = 0 alors f est identiquement

nulle.
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2. Soit f est tout le temps positive, soit elle tout le temps négative, soit elle change (au moins un fois)
de signe. Dans le premier cas f est identiquement nulle par la première question, dans le second cas
c’est pareil (en appliquant la première question à − f ). Pour le troisième cas le théorème des valeurs
intermédiaires affirme qu’il existe c tel que f (c) = 0.

3. Posons g(x) = f (x)− x. Alors
∫ 1

0 g(x)dx =
∫ 1

0
(

f (x)− x
)
dx =

∫ 1
0 f (x)dx− 1

2 = 0. Donc par la question
précédente, g étant continue, il existe d ∈ [0,1] tel que g(d) = 0, ce qui est équivalent à f (d) = d.

Correction de l’exercice 4 N

1. Vrai.

2. Vrai.

3. Faux ! Attention aux valeurs négatives par exemple pour f (x) = x alors F est décroissante sur ]−∞,0] et
croissante sur [0,+∞[.

4. Faux. Attention aux valeurs négatives par exemple pour f (x) = x2 alors F est négative sur ]−∞,0] et
positive sur [0,+∞[.

5. Vrai.

6. Faux. Faire le calcul avec la fonction f (x) = 1+ sin(x) par exemple.

7. Vrai.

Correction de l’exercice 5 N

1.
∫

x2 lnxdx

Considérons l’intégration par parties avec u = lnx et v′ = x2. On a donc u′ = 1
x et v = x3

3 . Donc∫
lnx× x2 dx =

∫
uv′ =

[
uv
]
−
∫

u′v

=

[
lnx× x3

3

]
−
∫ 1

x
× x3

3
dx

=

[
lnx× x3

3

]
−
∫ x2

3
dx

=
x3

3
lnx− x3

9
+ c

2.
∫

xarctanxdx

Considérons l’intégration par parties avec u = arctanx et v′ = x. On a donc u′ = 1
1+x2 et v = x2

2 . Donc∫
arctanx× xdx =

∫
uv′ =

[
uv
]
−
∫

u′v

=

[
arctanx× x2

2

]
−
∫ 1

1+ x2 ×
x2

2
dx

=

[
arctanx× x2

2

]
− 1

2

∫ (
1− 1

1+ x2

)
dx

=
x2

2
arctanx− 1

2
x+

1
2

arctanx+ c

=
1
2
(1+ x2)arctanx− 1

2
x+ c

8



3.
∫

lnxdx puis
∫
(lnx)2 dx

Pour la primitive
∫

lnxdx, regardons l’intégration par parties avec u = lnx et v′ = 1. Donc u′ = 1
x et v = x.∫

lnxdx =
∫

uv′ =
[
uv
]
−
∫

u′v

= [lnx× x]−
∫ 1

x
× xdx

= [lnx× x]−
∫

1dx

= x lnx− x+ c

Par la primitive
∫
(lnx)2 dx soit l’intégration par parties définie par u = (lnx)2 et v′ = 1. Donc u′ = 2 1

x lnx
et v = x. ∫

(lnx)2 dx =
∫

uv′ =
[
uv
]
−
∫

u′v

=
[
x(lnx)2]−2

∫
lnxdx

= x(lnx)2−2(x lnx− x)+ c

Pour obtenir la dernière ligne on a utilisé la primitive calculée précédemment.

4. Notons I =
∫

cosxexpxdx.
Regardons l’intégration par parties avec u = expx et v′ = cosx. Alors u′ = expx et v = sinx.
Donc

I =
∫

cosxexpxdx =
[

sinxexpx
]
−
∫

sinxexpxdx

Si l’on note J =
∫

sinxexpxdx, alors on a obtenu

I =
[

sinxexpx
]
− J (1)

Pour calculer J on refait une deuxième intégration par parties avec u = expx et v′ = sinx. Ce qui donne

J =
∫

sinxexpxdx =
[
− cosxexpx

]
−
∫
−cosxexpxdx =

[
− cosxexpx

]
+ I

Nous avons ainsi une deuxième équation :

J =
[
− cosxexpx

]
+ I (2)

Repartons de l’équation (1) dans laquelle on remplace J par la formule obtenue dans l’équation (2).

I =
[

sinxexpx
]
− J =

[
sinxexpx

]
−
[
− cosxexpx

]
− I

D’où
2I =

[
sinxexpx

]
+
[

cosxexpx
]

Ce qui nous permet de calculer notre intégrale :

I =
1
2
(sinx+ cosx)expx+ c.

Correction de l’exercice 6 N
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1.
∫
(cosx)1234 sinxdx

En posant le changement de variable u = cosx on a x = arccosu et du =−sinxdx et on obtient∫
(cosx)1234 sinxdx =

∫
u1234(−du) =− 1

1235
u1235 + c =− 1

1235
(cosx)1235 + c

Cette primitive est définie sur R.
2.
∫ 1

x lnx dx
En posant le changement de variable u = lnx on a x = expu et du = dx

x on écrit :∫ 1
x lnx

dx =
∫ 1

lnx
dx
x

=
∫ 1

u
du = ln |u|+ c = ln |lnx|+ c

Cette primitive est définie sur ]0,1[ ou sur ]1,+∞[ (la constante peut être différente pour chacun des
intervalles).

3.
∫ 1

3+exp(−x)dx

Soit le changement de variable u = expx. Alors x = lnu et du = expxdx ce qui s’écrit aussi dx = du
u .∫ 1

3+ exp(−x)
dx =

∫ 1
3+ 1

u

du
u

=
∫ 1

3u+1
du =

1
3

ln |3u+1|+ c =
1
3

ln(3expx+1)+ c

Cette primitive est définie sur R.
4.
∫ 1√

4x−x2 dx
Le changement de variable a pour but de se ramener à quelque chose de connu. Ici nous avons une
fraction avec une racine carrée au dénominateur et sous la racine un polynôme de degré 2. Ce que l’on
sait intégrer c’est ∫ 1√

1−u2
du = arcsinu+ c,

car on connaît la dérivée de la fonction arcsin(t) c’est arcsin′(t) = 1√
1−t2 . On va donc essayer de s’y

ramener. Essayons d’écrire ce qu’il y a sous la racine, 4x− x2 sous la forme 1− t2 : 4x− x2 = 4− (x−

2)2 = 4
(

1−
(1

2 x−1
)2
)

. Donc il est naturel d’essayer le changement de variable u = 1
2 x−1 pour lequel

4x− x2 = 4(1−u2) et dx = 2du.∫ 1√
4x− x2

dx =
∫ 1√

4(1−u2)
2du =

∫ du√
1−u2

= arcsinu+ c = arcsin
(

1
2

x−1
)
+ c

La fonction arcsinu est définie et dérivable pour u ∈]−1,1[ alors cette primitive est définie sur x ∈ ]0,4[.

Correction de l’exercice 7 N

1.
∫ x+2

x2−3x−4 dx

Pour calculer cette intégrale on décompose la fraction x+2
x2−3x−4 en éléments simples, le dénominateur

n’étant pas irréductible. On sait que cette fraction rationnelle se décompose avec des dénominateurs de
degré 1 et des constantes aux numérateurs :

x+2
x2−3x−4

=
x+2

(x+1)(x−4)
=

α

x+1
+

β

x−4

Il ne reste plus qu’à calculer α et β à l’aide de votre méthode favorite :

x+2
x2−3x−4

=
−1

5
x+1

+
6
5

x−4

Chacune de ces fractions est du type 1
u qui s’intègre en ln |u|, d’où :∫ x+2

x2−3x−4
dx =−1

5

∫ 1
x+1

dx+
6
5

∫ 1
x−4

dx =−1
5

ln |x+1|+ 6
5

ln |x−4|+ c

Cette primitive est définie sur R\{−1,4}
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2.
∫ x−1

x2+x+1 dx

Le dénominateur u= x2+x+1 est irréductible, la fraction est donc déjà décomposée en éléments simples.
On fait apparaître artificiellement une fraction du type u′

u qui s’intégrera à l’aide du logarithme :

x−1
x2 + x+1

=
1
2

2x+1
x2 + x+1

− 3
2

1
x2 + x+1

Chacune de ces fractions s’intègre, la première est du type u′
u dont une primitive sera ln |u|, la deuxième

sera du type 1
1+v2 dont une primitive est arctanv.

En détails cela donne :∫ x−1
x2 + x+1

dx =
∫ 1

2
2x+1

x2 + x+1
dx− 3

2

∫ 1
x2 + x+1

dx

=
1
2
[

ln |x2 + x+1|
]
− 3

2

∫ 1
3
4

1

1+
(

2√
3

(
x+ 1

2

))2 dx

=
1
2
[

ln |x2 + x+1|
]
−2

∫ 1
1+ v2

√
3

2
dv en posant v =

2√
3

(
x+

1
2

)
=

1
2
[

ln |x2 + x+1|
]
−
√

3
[

arctanv
]

=
1
2

ln |x2 + x+1|−
√

3arctan
(

2√
3

(
x+

1
2

))
+ c

Cette primitive est définie sur R.

3.
∫

sin8 xcos3 xdx
Lorsque l’on a une fonction qui s’exprime comme un polynôme (ou une fraction rationnelle), on peut
tester un des changements de variable u = cosx, u = sinx ou u = tanx. Soit vous essayez les trois,
soit vous appliquez les règles de Bioche. Ici, si l’on change x en π − x alors sin8 xcos3 xdx devient
sin8(π − x)cos3(π − x)d(π − x) = sin8 x(−cos3 x)(−dx) = sin8 xcos3 xdx. Donc le changement de va-
riable adéquat est u = sinx.
Posons u = sinx, du = cosxdx.∫

sin8 xcos3 xdx =
∫

sin8 xcos2 x(cosxdx) =
∫

sin8 x(1− sin2 x)(cosxdx)

=
∫

u8(1−u2)du =
∫

u8 du−
∫

u10 du

=
[1

9
u9]− [ 1

11
u11]= 1

9
sin9 x− 1

11
sin11 x+ c

Cette primitive est définie sur R.

4.
∫ 1

sinx dx
Comme 1

sin(−x) (−dx) = 1
sinx dx la règle de Bioche nous indique le changement de variable u = cosx.

Donc du =−sinxdx.
Donc ∫ 1

sinx
dx =

∫ −1
sin2 x

(−sinxdx)

=
∫ −1

1− cos2 x
(−sinxdx)

=−
∫ 1

1−u2 du

11



On décompose cette fraction en éléments simples : 1
1−u2 =

1
2

1
1+u +

1
2

1
1−u . Donc∫ 1

sinx
dx =−1

2

∫ 1
1+u

du− 1
2

∫ 1
1−u

du

=−1
2
[

ln |1+u|
]
− 1

2
[

ln |1−u|
]

=−1
2

ln |1+ cosx|− 1
2

ln |1− cosx|+ c

Cette primitive est définie sur tout intervalle du type ]kπ,(k+1)π[, k ∈ Z. Elle peut se réécrire sous
différentes formes : ∫ 1

sinx
dx =

1
2

ln
1− cosx
1+ cosx

+ c = ln
∣∣∣tan

x
2

∣∣∣+ c

Un autre changement de variable possible aurait été t = tan x
2 .

5.
∫ 3−sinx

2cosx+3tanx dx
La règle de Bioche nous indique le changement de variable u = sinx, du = cosxdx.

∫ 3− sinx
2cosx+3tanx

dx =
∫ 3− sinx

2cosx+3tanx
1

cosx
(cosxdx)

=
∫ 3− sinx

2cos2 x+3sinx
(cosxdx)

=
∫ 3− sinx

2−2sin2 x+3sinx
(cosxdx)

=
∫ 3−u

2−2u2 +3u
du

Occupons nous de la fraction que l’on réduit en éléments simples :

3−u
2−2u2 +3u

=
u−3

(u−2)(2u+1)
=

α

u−2
+

β

2u+1

On trouve α =−1
5 et β = 7

5 .
Ainsi ∫ 3− sinx

2cosx+3tanx
dx =

∫
α du
u−2

+
∫

β du
2u+1

= α ln |u−2|+β ln |2u+1|+ c

=−1
5

ln |2− sinx|+ 7
5

ln |1+2sinx|+ c

Cette primitive est définie pour les x vérifiant 1+2sinx> 0 donc sur tout intervalle du type
]
−π

6 +2kπ, 7π

6 +2kπ
[
,

k ∈ Z.

Correction de l’exercice 8 N

1.
∫ π

2
0 xsinxdx

12



Par intégration par parties avec u = x, v′ = sinx :∫ π

2

0
xsinxdx =

[
uv
] π

2
0 −

∫ π

2

0
u′v

=
[
− xcosx

] π

2
0 +

∫ π

2

0
cosxdx

=
[
− xcosx

] π

2
0 +

[
sinx

] π

2
0

= 0−0 + 1−0

= 1

2.
∫ 1

0
ex

√
ex+1

dx

Posons le changement de variable u = ex avec x = lnu et du = ex dx. La variable x varie de x = 0 à x = 1,
donc la variable u = ex varie de u = 1 à u = e.

∫ 1

0

ex dx√
ex +1

dx =
∫ e

1

du√
u+1

=
[
2
√

u+1
]e

1

= 2
√

e+1−2
√

2

3.
∫ 1

0
1

(1+x2)
2 dx

Posons le changement de variable x = tan t, alors on a dx = (1+ tan2 t)dt, t = arctanx et on sait aussi que
1+ tan2 t = 1

cos2 t . Comme x varie de x = 0 à x = 1 alors t doit varier de t = arctan0 = 0 à t = arctan1 = π

4 .

∫ 1

0

1

(1+ x2)2 dx =
∫ π

4

0

1
(1+ tan2 t)2 (1+ tan2 t)dt

=
∫ π

4

0

dt
1+ tan2 t

=
∫ π

4

0
cos2 t dt

=
1
2

∫ π

4

0
(cos(2t)+1)dt

=
1
2

[1
2

sin(2t)+ t
] π

4

0

=
1
4
+

π

8

4.
∫ 1

0
3x+1
(x+1)2 dx

Commençons par décomposer la fraction en éléments simples :

3x+1

(x+1)2 =
α

x+1
+

β

(x+1)2 =
3

x+1
− 2

(x+1)2

où l’on a trouvé α = 3 et β = −2. La première est une intégrale du type
∫ 1

u = [ln |u|] et la seconde∫ 1
u2 = [−1

u ].

13



∫ 1

0

3x+1

(x+1)2 dx = 3
∫ 1

0

1
x+1

dx−2
∫ 1

0

1
(x+1)2 dx

= 3
[

ln |x+1|
]1

0
−2
[
− 1

x+1

]1

0

= 3ln2−0 + 1−2

= 3ln2−1

5. Notons I =
∫ 2

1
2

(
1+ 1

x2

)
arctanxdx.

Posons le changement de variable u = 1
x et on a x = 1

u , dx = −du
u2 . Alors x variant de x = 1

2 à x = 2, u
varie lui de u = 2 à u = 1

2 (l’ordre est important !).

I =
∫ 2

1
2

(
1+

1
x2

)
arctanxdx

=
∫ 1

2

2

(
1+u2)arctan

1
u

(
−du

u2

)
=
∫ 2

1
2

(
1
u2 +1

)
arctan

1
u

du

=
∫ 2

1
2

(
1
u2 +1

)(
π

2
− arctanu

)
du car arctanu+ arctan

1
u
=

π

2

=
π

2

∫ 2

1
2

(
1
u2 +1

)
du−

∫ 2

1
2

(
1
u2 +1

)
arctanudu

=
π

2

[
−1

u
+u
]2

1
2

− I

=
3π

2
− I

Conclusion : I = 3π

4 .

Correction de l’exercice 9 N

1. Notons I =
∫ π

2
0

1
1+sinx dx. Le changement de variable t = tan x

2 transforme toute fraction rationnelle de
sinus et cosinus en une fraction rationnelle en t (que l’on sait résoudre !).
En posant t = tan x

2 on a x = arctan t
2 ainsi que les formules suivantes :

cosx =
1− t2

1+ t2 , sinx =
2t

1+ t2 , tanx =
2t

1− t2 , dx =
2dt

1+ t2 .

Ici, on a seulement à remplacer sinx. Comme x varie de x = 0 à x = π

2 alors t = tan x
2 varie de t = 0 à

t = 1.

I =
∫ π

2

0

1
1+ sinx

dx =
∫ 1

0

1
1+ 2t

1+t2

2dt
1+ t2

=
∫ 1

0

2
1+ t2 +2t

dt =
∫ 1

0

2
(1+ t)2 dt

=

[
−2

1+ t

]1

0
= 1

14



2. Notons J =
∫ π

2
0

sinx
1+sinx dx. Alors

I + J =
∫ π

2

0

1
1+ sinx

dx+
∫ π

2

0

sinx
1+ sinx

dx =
∫ π

2

0

1+ sinx
1+ sinx

dx =
∫ π

2

0
1dx =

[
x
] π

2
0 =

π

2
.

Donc J = π

2 − I = π

2 −1.

Correction de l’exercice 10 N

1. (a)

In+2 =
∫ π

2

0
sinn+1 x · sinxdx.

En posant u(x) = sinn+1 x et v′(x) = sinx et en intégrant par parties nous obtenons

In+2 =

[
− cosxsinn+1 x

] π

2

0
+ (n+1)

∫ π

2

0
cos2 xsinn xdx

= 0 + (n+1)
∫ π

2

0
(1− sin2 x)sinn xdx

= (n+1)In− (n+1)In+2.

Donc (n+2)In+2 = (n+1)In. Conclusion

In+2 =
n+1
n+2

In.

(b) Nous avons donc une formule de récurrence pour In qui s’exprime en fonction de In−2 qui a son
tour s’exprime en fonction de In−4, etc. On se ramène ainsi à l’intégrale de I0 (si n est pair) ou bien
de I1 (si n est impair). Un petit calcul donne I0 =

π

2 et I1 = 1. Par récurrence nous avons donc pour
n pair :

In =
1 ·3 · · ·(n−1)

2 ·4 · · ·n
π

2
,

et pour n impair :

In =
2 ·4 · · ·(n−1)

1 ·3 · · ·n
.

(c) Pour calculer
∫ 1
−1
(
1− x2

)n dx nous allons nous ramener à une intégrale de Wallis. Avec le change-
ment de variable x = cosu, on montre assez facilement que :∫ 1

−1

(
1− x2)n

dx = 2
∫ 1

0

(
1− x2)n

dx

= 2
∫ 0

π

2

(
1− cos2 u

)n
(−sinudu) avec x = cosu

= 2
∫ π

2

0
sin2n+1 udu

= 2I2n+1

2. (a) Sur [0, π

2 ] la fonction sinus est positive donc In est positive. De plus, sur ce même intervalle sinx6 1
donc (sinx)n+1 ≤ (sinx)n. Cela implique

In+1 =
∫ π

2

0
(sinx)n+1dx≤

∫ π

2

0
(sinx)ndx = In.

15



(b) Comme (In) est décroissante alors In+2 6 In+1 6 In, en divisant le tout par In > 0 nous obtenons
In+2
In
6 In+1

In
6 1. Mais nous avons déjà calculé In+2

In
= n+1

n+2 qui tend vers 1 quand n tend vers l’infini.
Donc In+1

In
tend vers +1 donc In ∼ In+1.

3. (a) Nous allons calculer In · In+1. Supposons par exemple que n est pair, alors par les formules obtenues
précédemment :

In× In+1 =
1 ·3 · · ·(n−1)

2 ·4 · · ·n
π

2
× 2 ·4 · · ·n

1 ·3 · · ·(n+1)
=

π

2
× 1

n+1
.

Si n est impair nous obtenons la même fraction. On en déduit que pour tout n : In · In+1 =
π

2(n+1) .

(b) Maintenant
I2
n = In · In ∼ In · In+1 =

π

2(n+1)
∼ π

2n
,

donc

In ∼
√

π

2n
.

(c)
1 ·3 · · ·(2n+1)

2 ·4 · · ·(2n)
= I2n · (2n+1) · 2

π
∼
√

π

4n
· (2n+1) · 2

π
∼ 2
√

n
π
.

Correction de l’exercice 11 N

1. Pour x > 0 on a xn

1+x 6 xn, donc

In 6
∫ 1

0
xndx =

[
1

n+1
xn+1

]1

0
=

1
n+1

.

Donc In→ 0 lorsque n→+∞.

2. In + In+1 =
∫ 1

0 xn 1+x
1+x dx =

∫ 1
0 xndx = 1

n+1 .

3. Soit Sn = 1− 1
2 +

1
3 −

1
4 + · · ·±

1
n = ∑

n
k=1

(−1)k+1

k . Par la question précédente nous avons Sn = (I0 + I1)−
(I1 + I2)+ (I2 + I3)− ·· ·± (In−1 + In). Mais d’autre part cette somme étant télescopique cela conduit à
Sn = I0± In. Alors la limite de Sn et donc de ∑

n
k=1

(−1)k+1

k (quand n→ +∞) est I0 car In → 0. Un petit
calcul montre que I0 =

∫ 1
0

dx
1+x = ln2. Donc la somme alternée des inverses des entiers converge vers ln2.

Correction de l’exercice 12 N
La courbe d’équation y = x2/2 est une parabole, la courbe d’équation y = 1

1+x2 est une courbe en cloche. Des-
sinez les deux graphes. Ces deux courbes délimitent une région dont nous allons calculer l’aire. Tout d’abord
ces deux courbes s’intersectent aux points d’abscisses x =+1 et x =−1 : cela se devine sur le graphique puis
se vérifie en résolvant l’équation x2

2 = 1
x2+1 .

Nous allons calculer deux aires :
– L’aire A1 de la région sous la parabole, au-dessus de l’axe des abscisses et entre les droites d’équation
(x =−1) et (x =+1). Alors

A1 =
∫ +1

−1

x2

2
dx =

[
x3

6

]+1

−1
=

1
3
.

– L’aire A2 de la région sous la cloche, au-dessus de l’axe des abscisses et entre les droites d’équation (x=−1)
et (x =+1). Alors

A2 =
∫ +1

−1

1
x2 +1

dx = [arctanx]+1
−1 =

π

2
.
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– L’aire A sous la cloche et au-dessus de la parabole vaut maintenant

A = A2−A1 =
π

2
− 1

3
.

Correction de l’exercice 13 N
Calculons seulement un quart de l’aire : la partie du quadrant x ≥ 0,y ≥ 0. Pour ce quadrant les points de

l’ellipse ont une abscisse x qui vérifie 0≤ x≤ a. Et la relation x2

a2 +
y2

b2 = 1 donne y = b
√

1− x2

a2 .

Nous devons donc calculer l’aire sous la courbe d’équation y = b
√

1− x2

a2 , au-dessus de l’axe des abscisses et
entre les droites d’équations (x = 0) et (x = a) (faites un dessin !).

Cette aire vaut donc :
∫ a

0
b

√
1− x2

a2 dx. Nous allons calculer cette intégrale à l’aide du changement de variable

x = acosu qui donne dx =−asinudu. La variable x variant de x = 0 à x = a alors la nouvelle variable u varie
du u = π

2 (pour lequel on a bien acos π

2 = 0) à u = π

2 (pour lequel on a bien acos0 = a). Autrement dit la
fonction u 7→ acosu est une bijection de [π

2 ,0] vers [0,a].

∫ a

0
b

√
1− x2

a2 dx =
∫ 0

π

2

b
√

1− cos2 u(−asinudu) en posant x = acosu

=
∫ 0

π

2

bsinu(−asinudu)

= ab
∫ π

2

0
sin2 udu

= ab
∫ π

2

0

1− cos(2u)
2

du

= ab
[

u
2
− sin(2u)

4

] π

2

0

=
πab

4

L’aire d’un quart d’ellipse est donc πab
4 .

Conclusion : l’aire d’une ellipse est πab, où a et b sont les longueurs des demi-axes. Si a = b = r on retrouve
que l’aire d’un disque de rayon r est πr2.

Correction de l’exercice 14 N

1. Soit

un = n
n−1

∑
k=0

1
k2 +n2 =

1
n

n−1

∑
k=0

1

1+
( k

n

)2 .

En posant f (x) = 1
1+x2 nous venons d’écrire la somme de Riemann correspondant à

∫ 1
0 f (x)dx. Cette

intégrale se calcule facilement :∫ 1

0
f (t)dt =

∫ 1

0

dx
1+ x2 =

[
arctanx

]1
0 =

π

4
.

La somme de Riemann un convergeant vers
∫ 1

0 f (x)dx nous venons de montrer que (un) converge vers π

4 .

2. Soit vn =
n
∏

k=1

(
1+ k2

n2

) 1
n
, notons

wn = lnvn =
n

∑
k=1

ln

((
1+

k2

n2

) 1
n
)

=
1
n

n

∑
k=1

ln
(

1+
k2

n2

)
.
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En posant g(x) = ln(1+ x2) nous reconnaissons la somme de Riemann correspondant à I =
∫ 1

0 g(x)dx.
Calculons cette intégrale :

I =
∫ 1

0
g(x)dx =

∫ 1

0
ln(1+ x2)dx

=
[
x ln(1+ x2)

]1
0−

∫ 1

0
x

2x
1+ x2 dx par intégration par parties

= ln2−2
∫ 1

0
1− 1

1+ x2 dx

= ln2−2
[
x− arctanx

]1
0

= ln2−2+
π

2
.

Nous venons de prouver que wn = lnvn converge vers I = ln2− 2+ π

2 , donc vn = expwn converge vers
exp(ln2−2+ π

2 ) = 2e
π

2−2. Bilan (vn) a pour limite 2e
π

2−2.
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