Calculs d’intégrales

Fiche d’ Arnaud Bodin, soigneusement relue par Chafiq Benhida

1 Utilisation de la définition

Exercice 1
Soit f la fonction définie sur [0,4] par

-1 six=0
1 si0<x<1
flx)=43 six=1
-2 sil<x<2
4 si2 <x<4.

1. Calculer [y f(t)dr.
2. Soit x € [0,4], calculer F(x) = [y f()dz.
3. Montrer que F est une fonction continue sur [0,4]. La fonction F est-elle dérivable sur [0,4] ?

Correction V Vidéo W [002081]

Exercice 2
Soient les fonctions définies sur IR,

fx)=x, g(x) =" eth(x) = ¢,

Justifier qu’elles sont intégrables sur tout intervalle fermé borné de R. En utilisant les sommes de Riemann,
calculer les intégrales fol f(x)dx, flzg(x)dx et [y h(r)dt.
Indication V¥ Correction V¥ Vidéo M [002082]

Exercice 3
Soit f : [a,b] — R une fonction continue sur [a,b] (a < D).

1. On suppose que f(x) > 0 pour tout x € [a,b], et que f(xp) > 0 en un point xy € [a,b]. Montrer que
7 f(x)dx > 0. En déduire que : «si f est une fonction continue positive sur [a,b] telle que [ f(x)dx =0
alors f est identiquement nulle».

2. On suppose que fab f(x)dx = 0. Montrer qu’il existe ¢ € [a,b] tel que f(c) =0.

3. Application : on suppose que f est une fonction continue sur [0, 1] telle que fol fx)dx= % Montrer qu’il
existe d € [0,1] tel que f(d) =d.

Indication V¥ Correction V¥ Vidéo M [002085]

Exercice 4

Soit f : R — R une fonction continue sur R et F(x) = [; f(¢)dr. Répondre par vrai ou faux aux affirmations
suivantes :


http://exo7.emath.fr
http://exo7.emath.fr/ficpdf/fic00015.pdf
http://www.youtube.com/watch?v=UXp2ntGBZNE
http://www.youtube.com/watch?v=KDx-xpueG-U
http://www.youtube.com/watch?v=OjBbmNvQoSY

F est continue sur R.

F est dérivable sur R de dérivée f.

Si f est croissante sur R alors F est croissante sur R.
Si f est positive sur R alors F est positive sur R.

Si f est positive sur R alors F est croissante sur R.

AN O e

Si f est T-périodique sur R alors F est T-périodique sur R.
7. Si f est paire alors F est impaire.

Correction V¥ Vidéo W [002091]

2 Calculs de primitives

Exercice 5

Calculer les primitives suivantes par intégration par parties.
1. [**Inxdx
2. [xarctanxdx
3. [Inxdx puis [(Inx)dx
4. [cosxexpxdx

Indication V¥ Correction V¥ Vidéo W [006864]

Exercice 6

Calculer les primitives suivantes par changement de variable.

1. [(cosx)'?3*sinxdx

Indication V Correction V¥ Vidéo M [006865]

Exercice 7

Calculer les primitives suivantes, en précisant si nécessaire les intervalles de validité des calculs :
1. [ 52 dx

x2-3x—4
x—1
2. fx2+x+1 dx
3. [sin®xcos® xdx
1

3—sinx
5. 2cosx+3tanx dx

Indication V¥ Correction ¥ Vidéo A [006866]

3 Calculs d’intégrales

Exercice 8

Calculer les intégrales suivantes :

pa
1. [, xsinxdx (intégration par parties)

2. fol :%H dx (al’aide d’un changement de variable simple)


http://www.youtube.com/watch?v=fKCXQ-Fl1Z8
http://www.youtube.com/watch?v=15IrPAzKwzc
http://www.youtube.com/watch?v=qdUaqxk3B2s
http://www.youtube.com/watch?v=0bvIaJVZNwY

3. fol —L _dx (changement de variable x = tant)

(1+4x2)°

01 % dx (décomposition en éléments simples)
X

5. [ %2 (1+ )%) arctanxdx  (changement de variable u = 1)

Indication V¥ Correction V¥ Vidéo A [006867]
Exercice 9
Calculer les intégrales suivantes :
71 2 sinx
[lwa [fomy,
o 1-+sinx o 1-+sinx
Indication V¥ Correction ¥ Vidéo A [002095]
Exercice 10 Intégrales de Wallis
Soit [, = / (sinx)"dx pourn € N.
0
1. Montrer que I,.» = "L1,. Expliciter I,. En dédui (1 -x)"d
. que I = 55 1. Expliciter Z,. En eulreffl( x) X.

2. Montrer que (), est positive décroissante. Montrer que [, ~ I,

3. Simplifier I, - I, 1. Montrer que I, ~ / 2—’; En déduire %2(';;;) ~ 2\/¥ .
Indication V¥ Correction ¥ Vidéo N [002096]
Exercice 11

Loy
Soit I, = / dx.
o 14+x
1. En majorant la fonction intégrée, montrer que lim, 11, = 0.
2. Calculer I, + I, 1.
n (_1)k+1
3. Déterminer lim Z — .
n—eo \ = k
Indication V¥ Correction V¥ Vidéo A [002097]
4 Applications : calculs d’aires, calculs de limites
Exercice 12
. Lo P . . x? 1
Calculer I’aire de la région délimitée par les courbes d’équation y = > ety = T2
X

Indication V¥ Correction ¥ Vidéo A [002099]

Exercice 13

Calculer I’aire intérieure d’une ellipse d’équation :

x2 y2

Indications. On pourra calculer seulement la partie de I’ellipse correspondant a x > 0, y > 0. Puis exprimer y

en fonction de x. Enfin calculer une intégrale.

Indication V¥ Correction ¥ Vidéo A

[006863]

Exercice 14

Calculer la limite des suites suivantes :


http://www.youtube.com/watch?v=Bydd17Yz8RA
http://www.youtube.com/watch?v=1uLeRF-liOk
http://www.youtube.com/watch?v=Rp5pIHte82w
http://www.youtube.com/watch?v=JSvF3eC5EuA
http://www.youtube.com/watch?v=1rhApdE7JPY
http://www.youtube.com/watch?v=U6GrjVSfshM

n—1 1
1. u, = I’lkzzom

2115

k=1
Indication V¥ Correction V Vidéo A [002100]
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Indication pour ’exercice 2 A

Les fonctions continues ne seraient-elles pas intégrables ?

Il faut se souvenir de ce que vaut la somme des n premiers entiers, la somme des carrés des n premiers entiers
. £ e £z - b
et la somme d’une suite géométrique. La formule générale pour les sommes de Riemann est que [, f(x)dx est

la limite (quand n — +o0) de
b—a"dl b—
et ()

Indication pour I’exercice 3 A

1. Revenir a la définition de la continuité en xp en prenant € =

@ par exemple.

2. Soit f est tout le temps de mé&me signe (et alors utiliser la premiere question), soit ce n’est pas le cas (et
alors utiliser un théoréme classique...).

3. On remarquera que fol fx)dx—3 = fol (f(x) —x)dx.

Indication pour I’exercice 5 A

2 u=Inx.

1. Pour [x?Inxdx poser v/ = x
2. Pour [xarctanxdx poser v/ = x et u = arctanx.
3. Pour les deux il faut faire une intégration par parties avec v = 1.

4. Pour [cosxexpxdyx il faut faire deux intégrations par parties.

Indication pour I’exercice 6 A

1. [ cos'P* xsinxdx = —ﬁ cos?Px+¢ (changement de variable u = cosx)

2. [ 4 dx=In|Inx| + ¢ (changement de variable u = Inx)

3. J mdx = %ln (3expx+ 1)+ ¢ (changement de variable u = expx)

4. [ \/ﬁdx = arcsin (%x — 1) + ¢ (changement de variable u = %x -1

Indication pour I’exercice 7 A

1. [ x2f§fﬁ Jdx = —1In|x+ 1|+ ¢1n|x — 4|+ ¢ (décomposition en éléments simples)

2. [Fqde= 3| +x+ 1| —+/3arctan (% (x—l—%)) +c

3. [sin®xcos®xdx = §sin9x— Lsin'lx4c

4. [ dx=3In]| %_;g:;‘ +c=In }tan%’ + ¢ (changement de variable u = cosx ou u = tan3)
5. Mﬁ%dx = —1In|2 —sinx|+ ZIn|1 +2sinx| + ¢ (changement de variable u = sinx)

Indication pour I’exercice 8 A

T
1. Ji? xsinxdx =1 (intégration par parties v/ = sinx, u = x)

2. fol \/% dx =2+/e+1—2v/2 (al’aide du changement de variable u = ¢¥)

3. fo 1+ Ty dx = Z 4 1 (changement de variable x = tant, dx = (1+ tan?)dt et 1 +tan?¢ = COSZt)
fol (if; dx =3In2 —1 (décomposition en éléments simples de la forme (31+1;2 =1t (xf%)z)



5[ %2 (1 + x%) arctanxdx = %” (changement de variables u = % et arctanx + arctan;lC =+7)

Indication pour I’exercice 9 A

Ea
1o 1 +imdx = 1 (changement de variables t = tan 3).

[% sinx
JO 1+sinx

dx = % — 1 (utiliser la précédente).

Indication pour I’exercice 10 A

1. Faire une intégration par parties afin d’exprimer [, en fonction de I,. Pour le calcul explicite on distin-
guera le cas des n pairs et impairs.

2. Rappel : u, ~ v, est équivalent a % — 1. Utiliser la décroissance de I, pour encadrer I"%l

Indication pour I’exercice 11 A

1. Majorer par x".
2.
3. On pourra calculer (Ip+1;) — (L + L)+ (L + 1) —---

Indication pour I’exercice 12 A

Un dessin ne fait pas de mal ! Il faut ensuite résoudre I’équation % = ﬁ puis calculer deux intégrales.

Indication pour I’exercice 13 A

a 2
11 faut se ramener au calcul de / b\/1— x—zdx.
0 a

Indication pour I’exercice 14 A

On pourra essayer de reconnaitre des sommes de Riemann, puis calculer des intégrales. Pour le produit com-
poser par la fonction In, afin de transformer le produit en une somme.




Correction de ’exercice 1 A

1. On trouve [y f(t)dr = +7. 11 faut tout d’abord tracer le graphe de cette fonction. Ensuite la valeur d’une
intégrale ne dépend pas de la valeur de la fonction en un point, c’est-a-dire ici les valeursen x =0, x = 1,
x =2 n’ont aucune influence sur I’intégrale. Ensuite on revient a la définition de f(f f(®)dr : pour la
subdivision de [0,4] définie par {xo = 0,x; = 1,x, = 2,x3 = 3,x4 =4}, on trouve la valeur de I’intégrale
(ici le sup et I’inf sont atteints et égaux pour cette subdivision et toute subdivision plus fine). Une autre
facon de faire est considérer que f est une fonction en escalier (en «oubliant» les accidents en x = 0,
x =1, x =2) dont on sait calculer I’intégrale.

2. C’est la méme chose pour [ f(7)dt, mais au lieu d’aller jusqu’a 4 on s’arréte a x, on trouve

X si0<x<1
F(x)=43-2x sil<x<2
4x—9 si2<x<4

3. Les seuls points a discuter pour la continuité sont les points x = 1 et x = 2, mais les limites a droite et a
gauche de F sont égales en ces points donc F est continue. Par contre F n’est pas dérivable en x = 1 (les
dérivées a droite et a gauche sont distinctes), F n’est pas non plus dérivable en x = 2.

Correction de I’exercice 2 A
Les fonctions sont continues donc intégrables !

1. En utilisant les sommes de Riemann, on sait que [, f(x)dx est la limite (quand n — o) de %ZZ;& f (%)
Notons S, = %Zz;éf(g). Alors S, = lZZ_(l)f = n2 ZZ ék = n%"( 5 Y On a utilisé que la somme des
flx

entiers de 0 a n — 1 vaut M . Donc S, tend vers 3. Donc I f(x)dx = 3.

2. Méme travail : [7 g(x)dx est la limite de S, = 2= Ly og(l+k=ty =1y 1+ 52 =1yt 40k 4
s—z) En séparant la somme en trois nous obtenons S, =1(n+ +2 =) M ok+ el M ok =1 +5 2 "(" Dy
%%W' Donc 4 la limite on trouve S, — 1+ 1+ 1 = . Donc [Zg(x)dx="1/3. Remarque :ona

utilisé que la somme des carrés des entiers de 0 a n — 1 est w.

3. Méme chose pour [yh(t)dr qui est la limite de S), = £}~ (—) =2y Oe = xZZ;é(e%)k. Cette

derniere somme est la somme d’une suite géométrique (si x 75 0), donc S/ = ;—‘1;(“’1) = ﬁllfie‘ =(1-
n en
e* )1 + qui tend vers e* — 1. Pour obtenir cette derniere limite on remarque qu’en posant ¥ = = on a
n 1
i = -1/ eT qui tend vers —1 lorsque u — O (ce qui est équivalent a n — +-o0).

Correction de ’exercice 3 A

1. Ecrivons la continuité de f en x avec € = @ > 0 : il existe & > 0 tel que pour tout x € [xg — J,xp + O]

on ait | f(x) — f(x0)| < €. Avec notre choix de € cela donne pour x € [xg — 8,x0 + 8] que f(x) > L (;0).

‘ b . P _
Pour évaluer [, f(x)dx nous la coupons en trois morceaux par linéarité de I’intégrale :

/f a'x—/m(s dx—I—/XOJHS x)dx+ ’ f(x)dx

x0+6

Comme f est positive alors par positivité de I'intégrale [7°~ S f (x)dx =0 et f 15 f(x)dx > 0. Pour le

terme du milieu on a f(x) > (x" donc [3%" x°+5 f(x)dx > f;}“fg L;")dx = 25% (pour la derniere équa-

tion on calcule juste l’intégrale d’une fonctlon constante !). Le bilan de tout cela est que | f flx)dx >
f(x0)

265> > 0.

Donc pour une fonction continue et positive f, si elle est strictement positive en un point alors |, : f(x)dx>

0. Par contraposition pour une fonction continue et positive si || ab f(x)dx =0 alors f est identiquement
nulle.



2. Soit f est tout le temps positive, soit elle tout le temps négative, soit elle change (au moins un fois)
de signe. Dans le premier cas f est identiquement nulle par la premiere question, dans le second cas
c’est pareil (en appliquant la premiere question a — f). Pour le troisieme cas le théoreme des valeurs
intermédiaires affirme qu’il existe ¢ tel que f(c) = 0.

3. Posons g(x) = f(x) —x. Alors folg(x)dx = fol (f(x) —x)dx = fol f(x)dx— % = 0. Donc par la question
précédente, g étant continue, il existe d € [0, 1] tel que g(d) = 0, ce qui est équivalent & f(d) =d.

Correction de ’exercice 4 A
1. Vrai.
2. Vrai.

3. Faux ! Attention aux valeurs négatives par exemple pour f(x) = x alors F est décroissante sur | — oo, 0] et
croissante sur [0, +oo].

4. Faux. Attention aux valeurs négatives par exemple pour f(x) = x> alors F est négative sur ] — oo,0] et
positive sur [0, +oo].

5. Vrai.

6. Faux. Faire le calcul avec la fonction f(x) = 1+ sin(x) par exemple.

7. Vrai.

Correction de I’exercice 5 A

1. [x*Inxdx
1

: z . z . . 3
Considérons I’intégration par parties avec u = Inx et v/ = x?>. On a donc u’ = L etv==3.Donc

/lnxxxzdx:/uv’: [uv] —/u’v
3 1 3
= [lnxx);} —/;x%dx

X X2
pr— 1 —_— J—
[nx><3} /3dx

3 | 3 .
=—Inx——+c
3 9
2. [xarctanxdx
s 14 . 2 . . 2
Considérons I’intégration par parties avec u = arctanx et v/ = x. On a donc u’ = 1J17 etv = %. Donc

/arctanxxxdx: /uv’ = [uv] —/u’v
arctanx X x? / | X X d
2 1+x2 2

VR D S U S
= |arctanx — | — = —_ X
2 2 1+4x2

* arct Lt Larctanx+
= —arctanx — — — arctan

2 X 2.7C 2 X C
1

1
= 5(1 + x?) arctan x — §x+c



3. [Inxdx puis [(Inx)?dx
Pour la primitive [ Inxdx, regardons I’intégration par parties avec u = Inx et v/ = 1. Donc u' = % etv=ux.

/lnxdx:/uv’: [uv} —/u’v
:[lnxxx}—/ixxdx
:[lnxxx}—/ldx

=xlnx—x+c¢

Par la primitive [ (Inx)*dx soit I'intégration par parties définie par u = (Inx)? et/ = 1. Donc u' = 21 Inx

etv=x.
/(lnx)zdx: /uv’ = [wv] —/u’v
- [x(lnx)z] —2/lnxdx

= x(Inx)* = 2(xInx —x) + ¢

Pour obtenir la derniere ligne on a utilisé la primitive calculée précédemment.

4. Notons [ = [ cosxexpxdx.
Regardons I’intégration par parties avec u = expx et v/ = cosx. Alors u/ = expx et v = sinx.
Donc

1= /cosxexpxdx: [sinxexpx| —/sinxexpxdx
Sil’on note J = [ sinxexpxdx, alors on a obtenu
I = [sinxexpx] —J (H
Pour calculer J on refait une deuxiéme intégration par parties avec u = expx et v = sinx. Ce qui donne
J= /sinxexpxdx: [—cosxexpx] —/—cosxexpxdx = [—cosxexpx] +1

Nous avons ainsi une deuxieme équation :

J= [—cosxexpx} +1 2)
Repartons de I’équation (1) dans laquelle on remplace J par la formule obtenue dans I’équation (2).

I= [sinxexpx] —J = [sinxexpx} — [—cosxexpx} -1

D’ou
21 = [sinxexpx| + [cosxexpx]

Ce qui nous permet de calculer notre intégrale :

1
1= 3 (sinx+ cosx)expx+c.

Correction de ’exercice 6 A




1. [(cosx)'?¥*sinxdx

En posant le changement de variable # = cosx on a x = arccosu et du = —sinxdx et on obtient
‘ ' 1 1
1234 1234 1235 1235
dx = du) — ——— - _
/(cosx) sinxdx / u =% (—du) 535" +c ED (cosx) " +c
Cette primitive est définie sur R.
2. [ dx
En posant le changement de variable # = Inx on ax =expu et du = % on écrit :
1 1 d 1
/ dx = ——x—/fdu:1n|u\—|—c:ln|lnx\—|—c
xInx Inx x u
Cette primitive est définie sur ]0, 1] ou sur ]1,+oo[ (la constante peut étre différente pour chacun des
intervalles).
1
3. f 3+exp(—x) dx
Soit le changement de variable u = expx. Alors x = Inu et du = expxdx ce qui s’écrit aussi dx = @.
du 1 1
— = du= —1 Bu+1 =—-In(3 1)+
/3+exp /3+ /3u+1 u=-InBu+1|+c= 3n( expx+ 1)+

Cette primitive est définie sur R.

4. L__dx
f\/4x7x2
Le changement de variable a pour but de se ramener a quelque chose de connu. Ici nous avons une

fraction avec une racine carrée au dénominateur et sous la racine un polyndme de degré 2. Ce que I’on
sait intégrer c’est

du = arcsinu +c,

1
V1—u?
car on connait la dérivée de la fonction arcsin(z) ¢’est arcsin’(t) = \/1177 On va donc essayer de s’y
2

ramener. Essayons d’écrire ce qu’il y a sous la racine, 4x — x? sous la forme 1 —#2 : 4x —x*> = 4 — (x —
2)2=4 <1 . ( X — 1) ) . Donc il est naturel d’essayer le changement de variable u = %x — 1 pour lequel
dx —x? =4(1 —u?) et dx = 2du.
/ : d / : 2d / du arcsinu + arcsin <1 1> +
——dx= | —V——=2du= | ———= = u+c= —X— c
Véx —x? V41 —u?) V1—u? 2

La fonction arcsinu est définie et dérivable pour u €] — 1, 1[ alors cette primitive est définie sur x € |0,4].

Correction de I’exercice 7 A

x+2
1. f)c2 3x— 4
x+2

Pour calculer cette intégrale on décompose la fraction "= en éléments simples, le dénominateur
n’étant pas irréductible. On sait que cette fraction ratlonnelle se décompose avec des dénominateurs de
degré 1 et des constantes aux numérateurs :
x+2 x+2 o« n B
—3x—4 (x+1)(x—4) x+1 x—4
Il ne reste plus qu’a calculer « et B a I’aide de votre méthode favorite :
x+2 —% n g
—-3x—4 x+1 x—-4

ou:

Chacune de ces fractions est du type qui

[ x+,/
3x4_5x+1 5/ x—

Cette primitive est définie sur R\ {—1,4}

1 6
4dx:—gln\x+l|+gln|x—4|+c

10



2. x2+x+1
Le dénominateur u = x> +x+ 1 est irréductible, la fraction est donc déja décomposée en éléments simples.
On fait apparaitre artificiellement une fraction du type *- qui s’intégrera a I’aide du logarithme :

x—1 1 2x+1 3 1
4x+1 2x24x+1 2x2+4x+1

. . N .o / . Lo LEN
Chacune de ces fractions s’intégre, la premiére est du type “- dont une primitive sera In |u/, la deuxi¢me
1 e
sera du type ;> dont une primitive est arctanv.

En détails cela donne :

/ x—1 1 2x+1 / J
- dxX= | - —5———dadx— < | ————dx
xX24+x+1 2x24+x+1 2) x2+x+1
1
[1n|x +x+1]] 2/ dx

T (E )

1 2 1
[1n|x +x+1]] 2/1 7 \Z[dv enposantv:ﬁ (x—|—2>

[ln|x +x+1]] - f[arctanv

2 1
= 5ln\x2 +x+ 1| —V3arctan <\/§ (x+2>) +c

»—l\)\r—‘ l\)\

Cette primitive est définie sur R.

3. [sin®xcosxdx
Lorsque I’on a une fonction qui s’exprime comme un polynéme (ou une fraction rationnelle), on peut
tester un des changements de variable u = cosx, u = sinx ou u = tanx. Soit vous essayez les trois,
soit vous appliquez les régles de Bioche. Ici, si I’on change x en 7 — x alors sin®xcos®xdx devient
sin®(m — x) cos® (m — x) d(m — x) = sin®x(— cos® x)(—dx) = sin® xcos> xdx. Donc le changement de va-
riable adéquat est u = sinx.

Posons u = sinx, du = cosxdx.

/sinchos3xdx: /sin8x0052x(cosxdx) = /sinsx(l — sin®x)(cosxdx)

:/uS(l—uz)du:/ugdu—/umdu

_19_i11 19 _i
—[9u] [llu} 9smx 11sm x+c

Cette primitive est définie sur R.

4. [ Gy dx
Comme m( dx) = 9131 - dx la régle de Bioche nous indique le changement de variable u = cosx.
Donc du = —sinxdx.
Donc

1 —1 .
/mdx—/m(—SIHXdX)

—1
= m( Slnxdx)

/1_u2du

11



On décompose cette fraction en éléments simples :

1—u? 1+u —u’
1 1 1 1 1
@d’c—‘i iy T
1
:—f[ln|1+u|] i[nll—ul]

1 1
= —§1n|1+cosx\ —§1n|1—cosx|+c

Cette primitive est définie sur tout intervalle du type |kx, (k+ 1) [, k € Z. Elle peut se réécrire sous

différentes formes :
1 1. 1—cosx X
—dx=-In———+c=Inltan-|+¢
sinx 2  1+cosx 2

Un autre changement de variable possible aurait ét€ ¢ = tan 3.
3—sinx
S f 2cosx+3tanx dx
La regle de Bioche nous indique le changement de variable u = sinx, du = cosxdx.

3 —sinx 3 —sinx 1

> dx= d
2cosx+3tanx * 2cosx+3tanx cosx(cosx *)
3 —sinx
—_— d
2cos8?x+ 3sinx (cosxdx)
3
= : 2s1nx — (cosxdx)
2 —2sin“x+ 3sinx
3—u
= ————d
222 +3u""
Occupons nous de la fraction que 1’on réduit en éléments simples :
3—u u—73 _a n B
2—-2u®+3u  (u—2)u+1) wu—2 2u+l1
On trouve o0 = —% et f= %
Ainsi
3 —sinx B Ocdu Bdu
200sx+3tanx u—2 2u+1

=oln|u—2|+BIn[2u+1|+c

1 7
= —gln|2—sinx\—|—gln|1+2sinx|+c

Cette primitive est définie pour les x vérifiant 142 sinx > 0 donc sur tout intervalle du type } — %+ 2k, %” +2km [
keZ.

Correction de ’exercice 8 A

n
1. [y xsinxdx
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Par intégration par parties avec u = x, V' = sinx :

xsinxdx = [uv] — uv
0 0

T
z 7
= [—xcosx}o2 +/ cosxdx
0

[=ENTEY

T
2

= [—xcosx]o + [sinx}g
=0-0 + 1-0
=1

1 e’
- Jo st dx
Posons le changement de variable u = ¢* avec x = Inu et du = e*dx. La variable x variede x=0ax =1,
donc la variable u = e¢* variedeu =1 au —=e.

/1 e“dx dx:/edu

0 Ve +1 1 Vu+1
= [2Vu+1];
=2Ve+1-2V2

1 1
. fo (1+x2)2 dx
Posons le changement de variable x = tant, alors on a dx = (1 + tan? t)dt, t = arctanx et on sait aussi que
1 +tan’t = coizl. Comme x varie de x =0 a x = 1 alors ¢ doit varier de t = arctan0 =0 a¢ = arctan 1 = %.
| i 1
7dx:/ —(1+tan®t)ds
I rrwe ol A e R
B /1‘ dt
—Jo 1+tan?s
= /Z cos’t dt
0
1 (%
= 7/ (cos(2t)+1)dt
2 Jo
171 I
1.7
48
1 3x+1
0 (xt1)?

Commencons par décomposer la fraction en éléments simples :

3x+1 o B 3 2

+1)2 x+l @12 xrl (xrl)2

ol I'on a trouvé = 3 et f = —2. La premiere est une intégrale du type [ 1 = [In|u] et la seconde

J&=1=a

13



U 3x4 1 Lo ro
/ m+2dx:3/)——ﬂh—2/‘———7dx
0 (x+1) 0o x+1 0o (x+1)
1 1 11
_3Dnu+1ﬂ0—2ﬁ- ]

x+1Jo
=3In2-0 4+ 1-2
=3In2-1
5. Notons I = f%z (14 %) arctanxdx.
Posons le changement de variable u = % etonax= %, dx = —%. Alors x variant de x = % ax=2,u
varieluideu =2au= % (’ordre est important !).
2 1
I:ﬁ <1+ >arctanxdx
1
2 1 du
—/ l—l—u arctan— | ——
u u
1 1
:/ < 2+1) arctan —du
1\u u
271 T 1 =«
= / = +1 (— — arctanu> du car arctanu -+ arctan — = —
1\u 2 u 2

2 1 2 1
:E —+1 du—/ — +1 ) arctanudu
2 J1 \u? 1\ u?

2 u 1
2
3
i,
2

Conclusion : [ = %’.

Correction de I’exercice 9 A

ks
1. Notons I = [} mdx. Le changement de variable # = tan 3 transforme toute fraction rationnelle de
sinus et cosinus en une fraction rationnelle en ¢ (que 1’on sait résoudre !).
En posant = tan § on a x = arctan § ainsi que les formules suivantes :

1—12 _ 2t . 2t 2dt
COSX = ———~ SINX = ———= anx = ——— X=—"=.
142’ 1412’ 1—1¢2’ 1412

Ici, on a seulement a remplacer sinx. Comme x varie de x =02 x = 7 alors t = tanj variede r =0 a
t=1

7 1 1 1 2dt
= —dx =
o 1-sinx 0 14+ -2 1412

H—t2

1 2 1 2
0o 14+1242¢ A(LHV
21!
= —_— :1
&

14



2. Notons J = [? {38 _dx. Alors

14

I—|—J:/72[ 1' dx—l—/g sin'x _/2 1+s1nx :/.gldx:[x]
o 1-+sinx o 1-+sinx 1—|—s1nx 0

DoncJ=%-1=7—1.

[=ENTE
Il
ST

Correction de I’exercice 10 A

1. (a)

s

2 . .
L= / sin*! x - sinxdx.
0
En posant u(x) = sin"*! x et v/(x) = sinx et en intégrant par parties nous obtenons
T

i
2 2

L2 = {—Cosxsm"+1 } + (n+1)/ cos® xsin” xdx
0 0

—0 + (n+1)/7(1—sin2x)sin”xdx
0

— (n+ D)y — (14 )l

Donc (n+2)I,42 = (n+ 1)I,. Conclusion

n+1
Ly =——I,.
n—+ n+2 n
(b) Nous avons donc une formule de récurrence pour I, qui s’exprime en fonction de /,_, qui a son
tour s’exprime en fonction de 1,4, etc. On se ramene ainsi a I’intégrale de Iy (si n est pair) ou bien
de I; (si n est impair). Un petit calcul donne Iy = % et I; = 1. Par récurrence nous avons donc pour
n pair :

I_l-3---(n—1)§
" 240 27
et pour n impair :
2:4---(n—1)
Ly =———F——.
1-3---n

(c) Pour calculer [ ! 1 (1 — xz)n dx nous allons nous ramener a une intégrale de Wallis. Avec le change-
ment de variable x = cosu, on montre assez facilement que :

/11 (1 —xz)nalx:2/1 (1 —x*

—2/ l—coszu) (—sinudu) avec x =cosu

=2 / Sln2n+l

= 2I2n+l

2. (a) Sur [0, 7] la fonction sinus est positive donc I, est positive. De plus, sur ce méme intervalle sinx < 1
donc (sinx)"*! < (sinx)". Cela implique

L1 = /2 (sinx)"“dx < /2 (Sinx)ndx =1,
0 0

15



(b) Comme (1) est décroissante alors I,,+» < I+ < I, en divisant le tout par I, > 0 nous obtenons

I I . . . ye o
22 < #E < 1. Mais nous avons déja calculé %2 = % qui tend vers 1 quand n tend vers I’infini.
n n n

I
Donc ”Ttl tend vers +1 donc [, ~ I, ;.

3. (a) Nous allons calculer I, - I, 1. Supposons par exemple que n est pair, alors par les formules obtenues
précédemment :
1-3.--(n—1)m 2-4---n T 1

L, xI, 1= — X X .
ol 24--n 27 13-(n+1) 2 n+l

Si n est impair nous obtenons la méme fraction. On en déduit que pour toutn : I, - I, = ﬁ
(b) Maintenant
Pl dy~dy dyoy = o o -
n n - in n " In+1 2(n+1) 2]1’

donc

(©

Correction de ’exercice 11 A

n
1. Pourx>0ona lex < x", donc

! 1 b
I, < / XNdx = | —x"T| = —.
0 n+1 o n+l
Donc I, — 0 lorsque n — +-oco.

1 1
2. Li+ 1L = x”%%dx: Jo X'dx = n}rl.

3. Soit S, =1— % + % — % == % =Y (71]3“1 . Par la question précédente nous avons S, = (Ip+1;) —

(h+5hL)+ (L+1)—---+(I,—1 +1,). Mais d’autre part cette somme étant télescopique cela conduit a
k+1

Sy = Iop £ 1,. Alors la limite de S, et donc de };_, (_1,3 . (quand n — 4o0) est Iy car I, — 0. Un petit

calcul montre que Iy = fol 1% =In2. Donc la somme alternée des inverses des entiers converge vers In2.

Correction de ’exercice 12 A

La courbe d’équation y = x? /2 est une parabole, la courbe d’équation y = ﬁ est une courbe en cloche. Des-
sinez les deux graphes. Ces deux courbes délimitent une région dont nous allons calculer 1’aire. Tout d’abord

ces deux courbes s’intersectent aux points d’abscisses x = +1 et x = —1 : cela se devine sur le graphique puis

2

£ £ s 4 N

se vérifie en résolvant 1 equgtlon 5 = oo
Nous allons calculer deux aires :

— L’aire 7] de la région sous la parabole, au-dessus de 1’axe des abscisses et entre les droites d’équation

(x=—1)et (x=+1). Alors
+1x2 x3 +1 1
= [ Ta=|T| =3
: -1 2 * [6}1 3

— Laire o de la région sous la cloche, au-dessus de 1’axe des abscisses et entre les droites d’équation (x = —1)
et (x=+1). Alors

1 o
%:[1 x2+1dx:[arctanx]f} =5

16



— L’aire & sous la cloche et au-dessus de la parabole vaut maintenant

T 1
d_%—m_i—g.

Correction de ’exercice 13 A
Calculons seulement un quart de I’aire : la partie du quadrant x > 0,y > 0. Pour ce quadrant les points de

. . o 22
Iellipse ont une abscisse x qui vérifie 0 < x < a. Et la relation 27 + 2—2 =1ldonney=>5b4/1— Z—z

Nous devons donc calculer I’aire sous la courbe d’équation y = b4/ 1 — Z—z, au-dessus de 1’axe des abscisses et
entre les droites d’équations (x = 0) et (x = a) (faites un dessin !).

. a x2 - S .
Cette aire vaut donc : / by/ 1 — —dx. Nous allons calculer cette intégrale a I’aide du changement de variable
0 a

x = acosu qui donne dx = —asinudu. La variable x variant de x = 0 a x = a alors la nouvelle variable u varie
du u = 7 (pour lequel on a bien acosZ = 0) a u = 7 (pour lequel on a bien acos0 = a). Autrement dit la
fonction u — acosu est une bijection de [F,0] vers [0,a].

a 2 0
/ b\/l—x—zdx:/ b\/1—cos?u(—asinudu) en posant x = acosu
0 a z

0
:/ bsinu(—asinudu)
z
3.,
:ab/ sin“udu
0
7 1—cos(2
:ab/2 cos(2u) i
0 2

B u sin(2u) z
=ab [2 E— ]
mab

4

0

L’aire d’un quart d’ellipse est donc ”T“b.

Conclusion : I’aire d’une ellipse est wab, ou a et b sont les longueurs des demi-axes. Si a = b = r on retrouve
que I’aire d’un disque de rayon r est 772

Correction de I’exercice 14 A

1. Soit 1 1
o 1 1'& 1
PSSP
SR+ n5 1+ (%)
En posant f(x) = ﬁ nous venons d’écrire la somme de Riemann correspondant a fol f(x)dx. Cette

intégrale se calcule facilement :

1 U dx 1 T
/Of(t)dt:/o 1+x2:[arctanx}ozz.

. 1
La somme de Riemann u, convergeant vers [, f(x)dx nous venons de montrer que (u,) converge vers 7.

n

1
2. Soitv, =[] (1 + %) " notons

k=1
i
n K2\ 7 12 k2
anlnvnzlgln((l'i‘nz) )anglln(lﬁ-rlz)
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En posant g(x) = In(1 4 x?) nous reconnaissons la somme de Riemann correspondant 4 I = fol g(x)dx.
Calculons cette intégrale :

1= /Olg(x)dx: /01 In(1 +x%)dx

L2
= [xIn(1 +x2)](1) — /0 xﬁ);zdx par intégration par parties

1 1
=In2-2 1——d
1 ./o 1+x2 o

=In2-2[x— arctanx](l)

T
=In2-2+—.
n —|—2

Nous venons de prouver que w, = Inv, converge vers [ =1In2 —2+ 7, donc v, = expw, converge vers
exp(In2—-2+7%)= 232, Bilan (v,) a pour limite 2¢% 2.
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