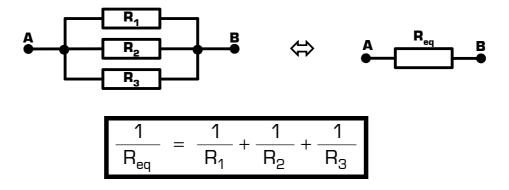
Section : S	Option : Sciences de l'ingénieur		Discipline : <i>Génie Électrique</i>	
Calcul dans un circuit électrique				
Domaine d'application : Représentation conventionnelle des systèmes		Type de document : Exercice	Classe : Première	Date :

Cette série d'exercices a pour but d'appliquer, dans des circuits électriques comportant des résistances, les concepts suivants :

- * Résistance équivalente de plusieurs résistances branchées en série ou en parallèle
- * Pont diviseur de tension

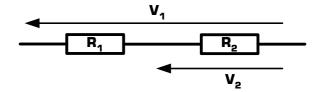

I - Résistance équivalente

<u>I - 1 - En série</u>

Dans un circuit électrique, plusieurs résistances branchées en série peuvent être remplacées par une seule résistance, appelée *résistance équivalente* et noté **R**_{eq}, dont la valeur est donnée par la relation ci-dessous :

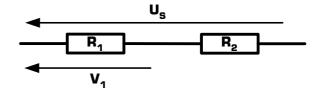
I - 2 - En parallèle

Dans un circuit électrique, plusieurs résistances branchées en parallèle peuvent être remplacées par une seule résistance, appelée résistance équivalente et noté \mathbf{R}_{eq} , dont la valeur est donnée par la relation ci-dessous :


II - Pont diviseur de tension

Lorsque deux résistances R1 et R2 sont branchées en série, et que l'on connaît la tension totale présente aux bornes des deux résistances [appelée V_{TOTAL} ci-dessous], le pont diviseur de tension permet de calculer instantanément la tension présente aux bornes d'une des résistances [sans passer par les courants] :

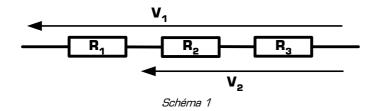
III - Applications

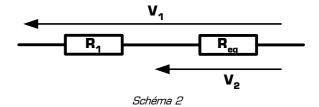

Exercice 1

- 1 Donnez l'expression littérale de la tension V₂ dans le circuit ci-contre.
- 2 Calculez la valeur numérique de V_2 sachant que V_1 = 12 V, R_1 = 1 k Ω et R_2 = 2 k Ω .

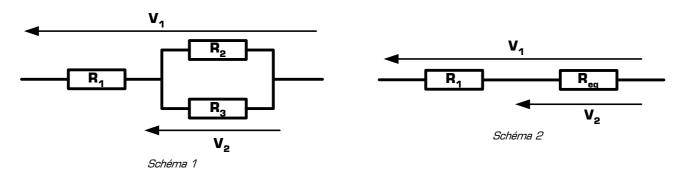
Exercice 2

- 1 Donnez l'expression littérale de la tension V_1 dans le circuit ci-contre.
- 2 Calculez la valeur numérique de V_2 sachant que U_8 = 9 V, R_1 = 4.7 k Ω et R_2 = 6.8 k Ω .




Exercice 3

- 1 Fléchez les tensions VCB, VBA, et VCA sur le circuit ci-contre.
- 2 Donnez l'expression littérale des tensions V_{CB} et V_{BA} en fonction de la tension V_{CA} .
- 3 Calculez V_{CB} et V_{BA} sachant que V_{CA} = 3 V, R_1 = $820~k\Omega$ et R_2 = $270~k\Omega.$


Exercice 4

- 1 Donnez l'expression littérale de Req dans le schéma 2, afin que le schéma 1 soit équivalent au schéma 2.
- 2 Calculez V_2 dans le schéma 1, sachant que V_1 = 10 V, R_1 = 68 k Ω , R_2 = 18 k Ω et R_3 = 22 k Ω .

Exercice 5

- 1 Donnez l'expression littérale de Req dans le schéma 2, afin que le schéma 1 soit équivalent au schéma 2.
- 2 Calculez la valeur numérique de R_{eq} , sachant que $V_1 = 14 \text{ V}$, $R_1 = 2.7 \text{ k}\Omega$, $R_2 = 1.2 \text{ k}\Omega$ et $R_3 = 3.3 \text{ k}\Omega$.
- 3 En déduire la valeur de la tension V2 dans le schéma 1.