Section : S	Option : Science	s de l'ingénieur	Discipline : <i>Gé</i>	nie Électrique
Repré	sentation nu			
Domaine d' Représentation conve n	application : Itionnelle des systèmes	Type de document : Cours	Classe : Première	Date :
I – Les systèmes de	numération			
Définition :				
esprit ingénieux nous c grand nombre : on fait formons un gros paquel Nous réinventons un sy paquet, il faut 10 unité numération actuel, com	is il est rare, malheureus onseille d'user d'un strat des petits paquets de 10 t de 100. estème de numération de és et pour obtenir un gr aposé de 10 symboles (0 10 unités et pour passer	agème pour ne pas se)! Et si cela ne suffit pa e base 10 . Pourquoi « o os paquet, il faut 10 p , 1, 2, 3, 4, 5, 6, 7, 8	faire posséder une as : avec 10 petits p de base 10 », car po etits paquets. C'est 3, 9). Pour passer a	nouvelle fois par le aquets de 10, nous our obtenir un petit notre système de u rang des dizaines
En décimal, chaque syr nombre, chaque chiffre système décimal est un Rang →	nbole est appelé un chiff a un rang : on parle d' système	re, et un ensemble de unités, dizaines, centair	nes, milliers, etc	On dit alors que le
Chiffre → Valeur →				
Total →		•	•	•
En une seule ligne on pe	ut écrire que :			
Remarques :				
*				
*				

Ces symboles sont : En binaire naturel, chaque symbole est appelé un bit, et un ensemble de bit est appelé un mot. Un mot de 4 bits est appelé un Un mot de 8 bits est appelé un																
Le binaire naturel est un système pondéré : chaque bit a un poids en fonction de sa position dans le mot. Exemple de nombre binaire :																
Rang →																
Poids →																
Chiffre →																
Valeur →																
Total →																
Le nombre binaire																
binaire et son équ	iivalerii	t en de	Cirriai	•												
Pour interpréter un nombre en binaire naturel, il faut connaître les puissances de 2 :																
Puissance de 2	2 ¹²	2 ¹¹	2 ¹⁰) [29	28	27	2 ⁶	1	2 5	2 ⁴	2³	2	2	2 ¹	2º
Valeur en décimal →																
Remarques: * * * Le lien entre le poids d'un chiffre, son rang, et la base du système de numération est donné ci-contre. Ce lien est valable pour tous les systèmes de numération pondérés:																
<u>I – 3 – L'hexadécimal</u>																
Ces symboles sont :																
Lien entre les 16	Lien entre les 16 symboles hexadécimaux et leur équivalent en décimal :															
Symbole hexadécimal	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
Equivalent en décimal																

L'hexadécimal es Pour interpréter			connaître les pui			
Puissance de 16	16 ⁵	16 ⁴	16 ³	16²	16 ¹	16º
Valeur en décimal →						
Exemple de nom	bre hexadécima	l:				
Rang 👈						
Poids →						
Chiffre 👈						
Valeur →						
Total 👈						
#	on d'un nombre version binaire	e d'une base ve e → décimal	ers une autre			
II - 2 - La con	version décima	al > binaire				
Principe:						
Exemples :						
II – 3 – La con	version binaire	e → hexadécim	nal			
Principe :						

www.gecif.net

COURS : Représentation numérique de l'information

Page 3 / 3

II - 4 - La conversion hexadécimal → binaire										
Principe:										
Exemples :										
III - Opération sur les nombres binaires										
III - 1 - Les opérations logiques										
<u>III - 1 - 1 - Le ET bits à bits</u>										
Cette opération, appliqué sur 2 nombres binaires, consiste à effecting. Exemples :	tuer (un E	T lo	gique	e en	tre	deu	x bit	ts du	même
Le ET bits à bits permet de forcer à 0 certains bits d'un nombre binaire. Par exemple, pour forcer à 0 les bits de rang 1 et 6 du nombre 1101001011[2] il faut effectuer l'opération ci-contre :	ET	1	1	0	1	0	0	1	0 1	1
III - 1 - 2 - Le OU bits à bits	=									
Cette opération, appliqué sur 2 nombres binaires, consiste à effec	tuer u	ın O	U lo	gique	e en	ıtre	deı	ıx bi	ts du	même
rang. Exemples :										
Le OU bits à bits permet de forcer à 1 certains bits d'un nombre		1	1	0	1	0	0	1	0 1	1
binaire. Par exemple, pour forcer à 1 les bits de rang 2 et 7 du nombre 1101001011[2] il faut effectuer l'opération ci-contre :	OU									
	=									
<u>III - 1 - 3 - Le OU-Exclusif bits à bits</u>										
Cette opération, appliqué sur 2 nombres binaires, consiste à effect même rang. Exemples :	uer u	n OL	J-Ex	clusi	f log	jique	en en	tre	deux	bits du

Exemples:

Le OU-Exclusif bits à bits permet de complémenter certains bits d'un nombre binaire. Par exemple, pour complémenter les bits de rang 0 et 5 du nombre 1101001011[2] il faut effectuer l'opération ci-contre :	\oplus	1	1	0 1	0	0	1 0	1	1
Toperation discontine.	=								
<u>III - 2 - Les opérations arithmétiques</u>									
III - 2 - 1 - L'addition de deux nombres binaires									
Comme en décimal, l'addition de deux <i>nombres</i> binaires s'appuie table d'addition, indiquant toutes les possibilités pour additionner (deux bits). Cette table d'addition élémentaire est donnée ci-contre S et la retenue éventuelle R lorsque l'on addition deux bits A et que les équations logiques de S et de R en fonction de A et B sont	deux : elle B . Or	<i>chif</i> indic	fres jue l	bina a son	ires nme	0 0 1	0 1 0 1	S	R
S =			R =	=					
Le montage ci-contre, appelé « demi-additionneur », permet d'additionner 2 bits A et B, et donne en sortie la somme S ainsi qu'une retenue éventuelle R :									
Exemples d'addition de 2 nombres binaires :									
III - 2 - 2 - Le décalage à gauche									
Cette opération consiste à décaler chaque bits d'un nombre binaire est placé au rang n+1 et le LSB prend la valeur O. Exemples :									
Remarque : décaler un nombre binaire d'un bit vers la gauche revier	nt à n	nultip	lier	ce no	mbre	par	2.		
III - 2 - 3 - Le décalage à droite									
Cette opération consiste à décaler chaque bits d'un nombre binair est placé au rang n-1 et le MSB prend la valeur O. Exemples :									_

Remarque : décaler un nombre binaire pair d'un bit vers la droite revient à diviser ce nombre par 2.

IV – Exercices d'application

IV - 1 - Conver $A = 101011_{\{2\}}$ $B = 1111_{\{2\}}$ $C = 10001_{\{2\}}$ $D = 101000_{\{2\}}$	rtissez en décimal E = 01110 _[2] F = 11011 _[2] G = 1000001 _[2] H = 1111111 _[2]	les nombres binair $I = 10111101_{(2)}$ $J = 1010101_{(2)}$ $K = 1101100_{(2)}$ $L = 001100_{(2)}$		$Q = 1110000_{(2)}$ $R = 10111011_{(2)}$ $S = 10000000_{(2)}$ $T = 11110111_{(2)}$	$U = 10110000_{(2)}$ $V = 11011101_{(2)}$ $W = 10000111_{(2)}$ $X = 10001000_{(2)}$				
IV - 2 - Conver $A = 16_{[10]}$ $B = 64_{[10]}$ $C = 33_{[10]}$ $D = 130_{[10]}$	rtissez en binaire (E = 63[10] F = 65[10] G = 100[10] H = 41[10]	naturel les nombres I = 256 ₍₁₀₎ J = 255 ₍₁₀₎ K = 257 ₍₁₀₎ L = 312 ₍₁₀₎	s décimaux suivants M = 457 _[10] N = 579 _[10] O = 993 _[10] P = 1016 _[10]	S: $Q = 1473_{[10]}$ $R = 2004_{[10]}$ $S = 3674_{[10]}$ $T = 4910_{[10]}$	$U = 5000_{[10]}$ $V = 6237_{[10]}$ $W = 7088_{[10]}$ $X = 8653_{[10]}$				
IV - 3 - Conver $A = 1234_{[16]}$ $B = ABCD_{[16]}$ $C = 47B9_{[16]}$ $D = FO21_{[16]}$	tissez en binaire (E = C5D91 _[16] F = 3E7B4 _[16] G = A850B _[16] H = 76534 _[16]	naturel les nombres I = FFFFFF _[16] J = 101010 _[16] K = 842814 _[16] L = BCDFEA _[16]	s hexadécimaux sui M = 553E32 _[16] N = 123456 _[16] O = CCCDDD _[16] P = 720A96 _[16]	vants : Q = 5D3F4B6 _[16] R = 9A40C27 _[16] S = B3EC8AA _[16] T = 10F01F1 _[16]	$U = 422E7498_{[16]}$ $V = BE4A3EDF_{[16]}$ $W = C3EDAFCB_{[16]}$ $X = 420A6D79_{[16]}$				
IV - 4 - Conver $A = 1011_{[2]}$ $B = 1100_{[2]}$ $C = 1111_{[2]}$ $D = 1001_{[2]}$	tissez en hexadéo E = 10010[2] F = 10111[2] G = 10100[2] H = 11110[2]	cimal les nombres b I = 110010 _[2] J = 100000 _[2] K = 101010 _[2] L = 111101 _[2]	oinaires suivants : M = 1011011 _[2] N = 1101011 _[2] O = 1001011 _[2] P = 1100010 _[2]	Q = 10110111 ₍₂₎ R = 10100011 ₍₂₎ S = 11111000 ₍₂₎ T = 11011110 ₍₂₎	$U = 1111111111_{[2]}$ $V = 1011111110_{[2]}$ $W = 101101011_{[2]}$ $X = 100010000_{[2]}$				
IV - 5 - Convert $A = E3_{[16]}$ $B = 2C_{[16]}$ $C = F4_{[16]}$ $D = 87_{[16]}$	tissez en décimal E = 12D _[16] F = 743 _[16] G = A1B _[16] H = 506 _[16]	les nombres hexact $I = 1010_{[16]}$ $J = FEDC_{[16]}$ $K = F000_{[16]}$ $L = 7451_{[16]}$	décimaux suivants : M = 6C82 _[16] N = 430B _[16] O = 9A10 _[16] P = C7C6 _[16]	$Q = 462A7_{[16]}$ $R = 963BE_{[16]}$ $S = FBF71_{[16]}$ $T = A057C_{[16]}$	$U = 523014_{[16]}$ $V = 9E46FA_{[16]}$ $W = 20C736_{[16]}$ $X = F01F28_{[16]}$				
IV - 6 - Conver $A = 12_{[10]}$ $B = 20_{[10]}$ $C = 35_{[10]}$ $D = 99_{[10]}$	rtissez en hexadéo E = 157 _[10] F = 547 _[10] G = 888 _[10] H = 470 _[10]	cimal les nombres d I = 1789 _[10] J = 1515 _[10] K = 1918 _[10] L = 2000 _[10]	décimaux suivants : M = 3100 _[10] N = 5781 _[10] O = 6951 _[10] P = 7810 _[10]	$Q = 4096_{[10]}$ $R = 2048_{[10]}$ $S = 5000_{[10]}$ $T = 2050_{[10]}$	$U = 1111_{[10]}$ $V = 2222_{[10]}$ $W = 3333_{[10]}$ $X = 4444_{[10]}$				
			adécimaux suivants stème de numérati M = 76851 _[16] N = CBB94 _[16] O = 30210 _[16] P = 852AD _[16]	•	U = 365DDE _[16] V = C9D9E9 _[16] W = ACB540 _[16] X = 70E45C _[16]				
			maux suivants apro e de numération dé M=993 _[10] N=1024 _[10] O=1025 _[10] P=1026 _[10]		U=777 _[10] V=512 _[10] W=1020 _[10] X=2049 _[10]				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$									